[image: image64.emf]
	Dakota Humphries
	dakota.humphries@gmail.com

	Thomas Impellitteri
	saberleo@comcast.net

	Daryl McGhee II
	Nautica0203@yahoo.com

	Keith Rosier
	krosier@gmail.com

Table of Contents

9Game Charter

9Vision Statement

9Meeting Schedule

9Hours Worked per Week

9When Things Go Wrong

10Decision-Making Process

10Rules of Conduct

10Team Roles

10Administrative Roles

10Technical Roles

11Executive Summary

11High Concept

11Locale

11Genre

11Basic Controls

11Keyboard and Mouse:

12Controller:

12Game Goal

12Target Platform

13Marketing & Target Audience

14Game Walkthrough/Overview

14Key Features

15General Features:

15Multiplayer Features

16Player Upgrades:

16Gameplay:

16Comparative Products

16How this Product Stacks up

17Treatment

17Dust Jacket Story

17Game Story

19Ships

19Player:

19Scout

20Fighter

21Gunship

22Battleship

23Starcruiser

25Enemies:

25Drone

26Plasma Jet

27Screamer

28Supernova

29Scryer

30Mother Ship

31Weapons

31Offensive:

31Light Laser Cannon

32Medium Laser Cannon

33Heavy Laser Cannon

34Mine

35Proton Torpedo

36Bombs

37Stasis Field

38Ion Beam

39Blackout

40Tractor Beam

41Self-Destruct

42Defensive:

42Reflective Shield

43Evasive Maneuvers

44Mine Detector

45Upgrade System

46Upgrades:

47Levels and Maps

47Clarification

47Human Home World

49Asteroid Belt

50Nebulous

51Black Hole

52Alien Home World

53Scenarios

53Destroy all Enemies

53Capture X Celestial Bodies

53Escape

54Environmental Objects

54Planets

55Stars

56Wormholes

57Asteroids

58Black Holes

59Art and Production Design

59Art & Animation Style

59Sound Effects Style

59Music Style

60Storyboards and Sample Art

61Interactivity

61Main Goal

61Sub Goal 01: Getting Started

61Sub Goal 02: Regaining Ground

61Sub Goal 03: Taking it Home

62Sub Goal 04: Miscalculations

62Basic Controls

62Keyboard and Mouse:

62Controller:

64Interface

71Interactive Rhythm

71How the Player Marks Progress

72Detailed Design Breakdown

72Front End Flow Chart

73Game Flow Chart (Part 1)

74Game Flow Chart (Part 2)

75Glossary of Terms

77Ships

77Scout/Drone

79Fighter/Plasma Jet

81Gunship/Screamer

83Battleship/Supernova

85Starcruiser/Scryer

87Mother Ship

88Weapons

88Offensive:

88Light Laser Cannon

89Medium Laser Cannon

90Heavy Laser Cannon

91Mine

92Proton Torpedo

93Bombs

94Stasis Field

95Ion Beam

96Black Out

97Tractor Beam

98Self-Destruct

99Defensive:

100Reflective Shield

101Evasive Maneuvers

102Mine Detector

103Levels and Maps

103Human Home World

104Asteroid Belt

105Nebulous

106Black Hole

107Alien Home World

108Environmental Objects

108Planets

109Stars

110Wormholes

110Asteroids

111Black Holes

112Combat System

112Skip

112Defend

112Evasive Maneuvers

112Reflector

112Attack

113Upgrade System

113Upgrades:

114Adding, Selling, and Upgrading a Ship

114Add a New Ship:

114Remove a Ship:

115Upgrade a Ship:

116Determining Starting Ship Stats (Equipment, Attack Power etc…)

117Game Logic, Algorithms, and Rules

117Interaction Component Matrix

121Key Game Algorithms

123FAQ

126Reference of Key Elements

126Scoring

126Winning/Losing

128Transitions

128Rewards

129Art and Production Design

1293D Art & Animation Deliverables

1293D models will be provided in the Maya format.

129Human Technology

130Xar’xix Technology

131Celestial Bodies

1312D Art (HUD/Menu/Particles/Textures) Deliverables

131Particle Effects

132Textures

133Sound Effect Deliverables

135Music Deliverables

136Cutscenes/Pre-rendered Scene Deliverables

137Tech Overview

138Coding Standards

138Naming Standards

138Prefix Convention

138Structures

139Classes

141Relevant Function Names

141Macros, Enums and Constants

142Commenting

143Coding Guidelines

144Development Environment

144Microsoft Visual Studio 2005 Visual C++ Compiler

145Timing Specifications

146System Architecture

147Relationships

147Game Module

147Combat System

148Event

149Effects

150Particle Engine

150Object Manager

151Shop System

151Upgrade System

151Camera System

152Render Engine

152Game Module

152Grid

152AI

152Object Manager

153System Feature Breakdown

153Game Module (singleton, global)

155Render Engine (singleton)

156Input System (global, singleton)

158Camera System

160Collision (global)

162Menu System (global)

164Object Manager (singleton)

166Event (Singleton)

168File Exporter (global)

170Lua Parser (global)

171AI

173Timer (global)

174Sound Manager (singleton)

176Particle Engine (singleton)

177Effects (wrapper)

179Game Feature Breakdown

179Combat System

182Shop System (global)

185Upgrade System (global)

190Grid

192Overworld Menu(Global)

194Milestone Deliverables

194Proof of Concept

196Appendix A

196Memory Map

198Integration Plan

199Testing Plans

202Appendix B

202Game Folder Hierarchy

Game Charter

[image: image1.jpg]USINGIIMAGINATION

Vision Statement

We want to generate a product that doesn’t merely prove we were here. We want a game that demonstrates our skill in an art foreign to most of the world. We want to create lasting memories and smiles not only for ourselves, but for those who play our game. We wish to leave an indelible mark upon anyone who takes a controller in their hand in order to explore our imaginations.

Meeting Schedule

In the first 2 months we shall meet 6 days a week (5 in class and 1 outside of class) and in the last 3 months we shall meet at least 5 times per week. Meetings will take place either at Full Sail or a group member’s house. They will commence at noon and end between 7 and 8pm. For the first 2 months a minimum of 20 hours a week will be worked with a max overtime cap of 40 hours, and a minimum of 40 hours a week will be worked with a max overtime cap of 56 hours during the last 3 months. In the event of an impending milestone, hours can be extended.

During these meetings, not only will design problems be addressed, but code will be generated. This will have a two fold effect. First, it will keep us on task. Second, it will allow for quicker solutions should a problem arise. It will also address any integration problems earlier rather than later.

Each team member is required to provide input about what they have accomplished and what they plan on accomplishing for the day. A team member will also provide a projected finish time for what they’re working on and how on track they are to meet that goal.

Hours Worked per Week

As stated above, we are going to meet at least 5 to 6 times per week, beginning at noon and ending between 7 and 8pm. While we will work for a minimum of 20 hours per week for the first 2 months and 40 hours per week for the last 3 months, a cap of 40 hours for the first 2 months and a cap of 56 hours for the last 3 months will be maintained unless a deadline is approaching that week.

When Things Go Wrong

Each team member will be given a hardcopy of the contact sheet so that internet outages won’t interfere with team-wide notification of an issue. If an issue occurs, the affected team member will email the rest of the team with the issue and either a course of action or request for a solution. If the emergency is significant enough, phone calls will be made as well.

To mitigate incidents that might occur during an emergency, everyone will be required to update their work material to Alienbrain at the end of each day. If something dire pops up, immediate update of work material should take place so that the rest of the team has access to the most recent work.

Decision-Making Process

We understand that an idea will either compliment or contradict our game and we shall apply that standard to each new thought. The pros and cons of a presented idea will be discussed and then accepted or rejected based on a group consensus. Should a stalemate arise on a decision, our EP will be contacted. We will present the issue to him/her as well as our proposed solutions and grievances. We will then ask the EP for his/her opinion.

Rules of Conduct

Each team member is expected to conduct themselves in a professional manner. This means that no one belittles another group member. Creating animosity is not conducive to producing a game that is the result of a group effort. There are a few other steps we will take to ensure a positive meeting atmosphere. First, the word “hate” will not be allowed at meetings. We have paid a lot of money for our education so we will express ourselves in an educated manner. Second, every idea will be given consideration. We understand that an idea will either compliment or contradict our game and we shall apply that standard to each new thought. Last, in case of conflict, we will try our best to not allow issues to be carried over to the next day. Compromise and resolution will be obtained to the best of our ability before we disband for the day.

If anyone violates these rules of conduct, it is expected that another group member takes a stand against it. Allowing injustice to pass is as bad as creating it. If someone is uncomfortable with confrontation in the presence of others, taking the person aside to talk is also an acceptable route.

Team Roles

Administrative Roles

Project Lead – Dakota Humphries

Technical Lead - Thomas Impelliteri
Design Lead – Daryl McGhee II

Asset Lead – Keith Rosier

QA Lead – Michael Wood

Technical Roles

Audio, Gameplay – Dakota Humphries

Artificial Inelegance – Thomas Impelliteri

Interface, Gameplay – Daryl McGhee II

Rendering – Keith Rosier
Executive Summary

[image: image59.png]

High Concept

Deny them their world the way they denied you yours.

Locale

Supernova Blindside takes place in outer space in the year 2400, from a macro perspective. Humanity’s technology level has reached a high point with the development of near light speed travel and devastating weapons. Combat takes place around planets, asteroid belts, stars and black holes. These elements will either hinder or help the player in their progression through the game. Many systems stand in the way between Earth2 and the Xar’xix home station. The player must wrestle control from the Xar’xix or outright destroy the opposing army to have a shot at the race’s mother ship: the fount of the Xar’xix civilization.

Genre

Supernova Blindside is a tactical (turn based) RPG.

Basic Controls

Keyboard and Mouse:

Primary

· Mouse (point and click)

Secondary

- Keyboard (reinforce menu navigation)

· Controller

Mouse – Move cursor; perform actions on the battle screen.

Left Mouse Button – Accept/Select

Right Mouse Button – Go back to the previous menu

Arrow Keys – Navigate Menus

Enter – Accept

Escape – Exits back to the front end

F1 – Game help

P – Pause

I - Show/Hide Interface

Space – Switch active plane (when moving, shows available places to move on that plane)

Shift – Show/Hide HP

In-Game

Tab – Go through list of available units when moving, go through available targets when attacking.

Controller:
Joystick – move cursor

D-Pad – navigate menus

A – Accept/Select

B – Back

Y – Show/Hide HP

X - Show/Hide Interface

Start – pause game

Select – Switch active plane (when moving, shows available places to move on that plane)

Left Bumper – Go through list of available units when moving, go through available targets when attacking.

Right Bumper - Go through list of available units when moving, go through available targets when attacking.

Game Goal

The overall goal of the game is to eliminate the Xar’xix threat by destroying their Mother Ship. The ship orbits, and draws energy from, one of last remaining stars in our sector of the galaxy (the alien race having destroyed nearly all others). Each stage has a meta-goal associated with. They range from simply destroying the opposing fleet of Xar’xix vessels to out maneuvering them economically. Other goals have you fleeing from overwhelming odds, obtaining wealth from planets before they are destroyed by black holes, and even turning Xar’xix technology against them by destroying the stars they use for energy.

Target Platform

The target platform is Windows XP with minimum system requirements to be determined later.

Marketing & Target Audience

Supernova Blindside is designed to appeal to males ages 13 and up though this doesn’t preclude female interest. Those with an affinity for Star Trek, Babylon 5, Battlestar: Galactica, Independence Day, and Firefly will be able to find points of interest in not only the story, but the gameplay as well.

Much like swords and dragon fantasy, science fiction allows an escape from present day Earth life. It promises a different way of life with different ways of performing daily tasks. The reader or viewer is not bound to a single planet. They are free to travel to other planets or through time or even to other dimensions. By destroying Earth, Supernova Blindside instantly gives the audience a new world and a new section of the galaxy to explore and defend. The destruction of Earth also instills a “this time it will be different” mentality in the player as we put them at the footsteps of the Xar’xix race and allow for the promise of retribution. This premise will appeal greatly to those who found themselves excited about the Federation/Borg conflict in Star Trek, the X/X conflict in Babylon 5, and Will Smith, Jeff Goldblum and a Mac vs. the aliens in Independence Day.

While Supernova Blindside caters to a large age range, it tugs at the heart strings of each age segment in different ways. For those 13-18, the desire to escape school, parents or even bullies will compel them to dive into and inhabit Supernova Blindside’s world. For those ages 18 and up, the game appeals to their nostalgia of growing up with Star Trek or other sci-fi franchises. Our game appeals to any age group because who doesn’t want to be one of the best hopes for the survival of our species?

Game Walkthrough/Overview

In Supernova Blindside, when first starting the game, you start at the overworld, where you choose from different battlefields. You can choose between different areas around black holes, asteroid belts, planets etc. After you choose an area, you are taken to a briefing screen that tells you the situation of the area that you chose. This is pertaining to the enemy conditions, if there are few or many, tips to the weaknesses of some of the enemies, possibly if some of them are upgraded. It does give some indication to the area for special cases, such as the presence of a black hole and asteroid belts. Also you are given the primary and secondary objectives on this screen, primary meaning you must complete these to move on to the next level, secondary meaning these are optional, but give more rewards.

After the briefing, you are taken to the shop where you spend points buying ships. Each ship has a point value and you have a point total that caps the amount and types of ships that you can have. So if you have a max of say…15 points, then you can only have as many types of ships that have a total of either less than or equal to 15. You can trade in ships to free up some or your point total, but any upgrades that that ship had, is lost, while you get back currency spent for those upgrades, you don’t get. After this then you head into battle. Usually you are on one side and the enemy is on the other, but depending on the level this can change. You then move your ships into place and if an enemy is in range, you can attack that ship. If you attack, you then select the weapon you are attacking with. Then attacking ship will turn, face that enemy, and fire the selected weapon, and it will either hit, miss (depending on the ship and its speed) or it can counter (using special defenses gained with upgrades). After this, you can do no more with this unit this turn. You repeat with all of your other units, and after all of your units have either moved and acted, or passed, then play goes to the other side, where they do the same.

After they complete their side, a turn has passed and play goes back to you. You can then move any unit you wish. Depending on the level, turns can have passive effects. For example, in a black hole mission, an example primary objective can be escape to a docking bay on a certain point of the map. But the way is blocked by enemy ships, and you begin near the event horizon of an expanding black hole. After every turn, the black hole can suck you in a certain amount of spaces after each turn. So after a turn is done, you would be moved that number of spaces back towards the black hole. Also the black hole will grow each turn. These and other passive effects could occur after a turn or a number of turns are completed.

Also different items on the board can either hinder or help your progress. Planets and stars can be captured for their resources, and used to add to your currency. Currency is used to buy upgrades at the shop when you complete a level, it also can be used as a secondary objective.

You then try to complete your primary objective, and once you have done that, you have won the battle. You then go to the shop where you can upgrade your ships using currency gained during the level. Then after you are done at the shop you can go to another level and repeat the process.

Key Features

General Features:

Multiple planes on the battlefield

· This allows ships to not only go to the sides of enemies, but to the top or bottom as well to try and get a tactical advantage, or try and get away from enemy ships. Some ships are more vulnerable on the top or bottom, so attacks will do extra damage.

Weapon and Armor balancing

· Each ship has different types of attacks and special moves that can be used against other ships. Some weapons are more affected by certain weapons, and other special abilities can aid the player in evading the enemy. So the player must use the weapon or ability best suited for the situation. As an example, the scout has a proton torpedo that better affects medium and heavier armor. Or on the defensive side, the scout has an evasive maneuver ability that when stronger ships fire at the scout it has a greater chance to dodge laser fire.

Environmental Cover

· Ships can use stars, planets, and smaller ships can use asteroids as cover against enemy fire, but as a downside to that, that cover can be destroyed and can turn against you if you stay around too long. If you are caught in the explosion, then you can be damaged or killed depending on the type of cover used.

Primary and Secondary Objectives

· The goals of the game aren’t just taking out the other enemy, it could be gaining more resources than the enemy, or capturing a certain amount of planets, or surviving a black hole while completing different objectives.

Multiplayer Features

Multiplayer will be treated with the hot-seat format. Players will share a keyboard and rotate out of the seat to proceed with their turns. Only one player may go at a time to attack and defend. The next player will then take control of the game and proceed with their turn. This will repeat until the scenario is cleared.

Player Upgrades:

Upgrading System

· After each level the player has a chance to spend their hard earned cash on upgrading their ships with gives ships more reinforced armor, increased firepower, and special attack or defense moves depending on the ship.

Gameplay:

Building your army

- You build your army using a point system. This is to put a cap on the amount of units on the board at one time, and also, to prevent sides from getting too overpowered. Every ship has a point value, and the player has a point cap that is increased with every level that you complete.

Comparative Products

· Advance Wars

· Disgaea

How this Product Stacks up

· Supernova Blindside follows a similar battle system like Advance Wars where each unit has a moving range, and an attacking range, so that the unit doesn’t need to be right next to another enemy unit to attack it. It also takes some of the balancing aspect of Advance wars such as certain units are more effective against others. The kind of view we were going for we wanted to get from Disgaea where its 3D and the camera can be rotated around the battlefield.

· Our game differs in that if offers multiple planes, so you can go over and below other attack units, and attack units on different planes. Also our game takes place in space, which gives the game a more freeform feel to it. Players get a sense that they can go anywhere that they want to. Also, Supernova’s are all obstacles that can be used as cover or can turn into hazards for anyone too close.

Treatment

[image: image60.jpg]

Dust Jacket Story

2415. The Sun has collapsed, victim of a fusion halting weapon wielded by a malicious race known as the Xar’xix. Earth is destroyed, obliterated by the star’s violent death. The last vestiges of humanity, the Remnants, have taken refuge at their assailant’s doorstep. Discovered at long last, the Xar’xix aim to complete what they started hundreds of years ago. Acquire, expand, and upgrade your armada of ships to keep pace with waves of Xar’xix craft sent to erase humanity’s presence in the galaxy. Choose from 5 unique ships designed to give you maximum flexibility in eliminating your foe. Turn the Xar’xix’s weapons against them by destroying stars, planets, and create black holes on their own turf. Take from them what they took from you.

Game Story

In a remote quadrant of the Milky Way galaxy there exists a race of beings known as the Xar’xix. They have existed since the before dinosaurs stomped across Earth’s verdant plains. While their level of technology is high, the Xar’xix remains a very primitive race. A pretender to a technological throne, their race was visited by the Shar’din, an ancient civilization, long ago. Unprepared for the brute physical strength of the Xar’xix, the Shar’din were easily overwhelmed. In time, the Xar’xix learned to use their stolen technology which included not only space travel and personal morphing devices but devastating weapons.

While their level of physical strength is high, the radical acceleration in technology stunted their mental growth. After a few hundred years the Xar’xix resolved to assimilate the technologies of other species into their own. Afraid of their own demise as other species raced up technology trees, the Xar’xix adopted a plan of mass extinction. Whenever a species became sufficiently advanced with which they could rival the Xar’xix, the star providing power to their homeworld was destroyed with a weapon that stopped all fusion within the gaseous bodies.

Around 1990, the Xar’xix discovered and set their eyes on Earth. Using their morphing technology they infiltrated the ranks of humanity at all levels. Siphoning their advancements for years upon years, the Xar’xix plotted humanity’s eventual extinction. Something unexpected happened, however. One of the female Xar’xix sent to Earth ended up falling in love during her stay. Unable to imagine a life without her lover, she informed him of the impending detonation event. The information quickly made its way to the heads of Earth’s governments who decided to build an Ark in secret. The Ark would serve as the last will and testament of the human race. Utilizing secrets learned from the Xar’xix, the Ark was constructed with light speed travel capabilities as well as their star destroying weapons.

As the Xar’xix moved into position around the Sun, the Ark cloaked itself and set out into space, leaving Earth behind indefinitely. From the monitors on the ship, everyone aboard watched as the Sun quickly became black and then exploded, sending a shockwave tearing through the solar system, obliterating Earth.

The Remnants, as they came to call themselves, slipped into a deep hyper-sleep and set course for a potentially inhabitable planet. After 50 years, they arrived only to find the system in ruin. The stars were dead: black and lifeless. The planets were non-existent, their husks shattered into thousands of meteorites. Disheartened, the Remnants set out again. They arrived at their next target to find the same situation: dead stars and crumbled planets.

This process continued for a couple hundred years with new generations replacing the old. Finally, they came upon a world that was untouched by the Xar’xix. To their horror, the Remnants found that the planet resided at the Xar’xix doorstep. Reconnaissance into their sectors revealed a vast network of systems in fealty to the Xar’xix. The Remnants were amazed to find an entire nebula being harvested for energy by the malicious race. Asteroids were inhabited by colonies of entities enslaved by the Xar’xix. The most surprising aspect was that they had no homeworld. Their entire civilization was concentrated on an impossibly large mother ship that orbited one of the only remaining giant stars in the quadrant.

The Remnants began colonizing the new world, filled with fear at being discovered but blinded by revenge they wished to exact. Buildings were constructed, ship yards erected, the population began to grow after years of forced breeding aboard the Ark. Finally, the day they had worried about arrived. During a propulsion systems test, a Remnant craft made contact with a Xar’xix warship. Before it was destroyed, the craft sent back a distress message with only three words: They found us. Now, the Xar’xix has moved their fleets into position, fortifying existing sectors while extending deep into Remnant territory. This time they’re leaving nothing to chance and have ordered a full scale invasion and no one will be left alive. It’s the hour of humanity’s final stand. Take from them what they took from you.

Ships

[image: image61.jpg]

Player:

Name/ID:
Scout

Brief Description:
Size (in grid spaces): 1x1 (Small)

Starting Armor: Light

Starting Weapon: Light Laser Cannon

Speed (in grid spaces): Fast (6-8)

The lightest and quickest unit in the fleet, the Scout unit can move quickly through the lines to find enemy units and possible troops. The Scout is the only ship able to detect mines. Scouts can also pass through asteroid fields with no damage. The Scout is able to use Bombs and Mines to damage larger ships, due to its weaker Laser Cannon capabilities, and also gain the Evasive Maneuvers special defense to better dodge the enemy’s attacks. The alien equivalent to the Scout is the Drone.

Visual Design:
[image: image2.png]

Name/ID:
Fighter

Brief Description:
Size (in grid spaces): 1x1 (Small)

Starting Armor: Light

Starting Weapon: Light Laser Cannon

Speed (in grid spaces): Fast (4-6)

The Fighter is the basic attack unit of the fleet. Along with its quick speed and durability, the Fighters rely on strength in numbers. This is the bulkier version of the Scout meant for combat. The Fighter can also be equipped with Medium Laser Cannons, upgraded from Light Laser Cannons and Proton Torpedoes, and gain the Evasive Maneuvers ability. The Fighter’s alien equivalent is known as the Plasma Jet.

Visual Design:
[image: image3.png]

Name/ID:
Gunship

Brief Description:
Size (in grid spaces): 2x1 (Medium)

Starting Armor: Medium

Starting Weapon: Medium Laser Cannon, Mines, Stasis Field

Speed (in grid spaces): Medium (4)

The larger version of the Fighter, the Gunship is armed for combat. Armed to the teeth, the Gunship is meant for taking multiple units at once while sacrificing its speed. In addition to its Medium Laser Cannon, the Gunship can use Mines to damage enemy forces, and it can use the Stasis Field to immobilize opponents. The alien equivalent of the Gunship is called the Screamer.

Visual Design:
[image: image4.png]

Name/ID:
Battleship

Brief Description:
Size (in grid spaces): 3x1 (Medium)

Starting Armor: Medium

Starting Weapon: Medium Laser Cannon, Proton Torpedoes

Speed (in grid spaces): Slow (3)

The Battleship is essentially a larger, slower version of the Gunship. However, it can be upgraded to utilize Heavy Laser Cannons and its armor can be upgraded to use the Reflective Shield ability. The Battleship is also capable of wielding the powerful Proton Torpedoes to damage enemies from afar. The alien equivalent is known as the Supernova.

Visual Design:
[image: image5.png]

Name/ID:
Starcruiser
Brief Description:
Size (in grid spaces): 4x2 (Large)

Starting Armor: Heavy

Starting Weapon: Heavy Laser Cannon, Proton Torpedoes, Tractor Beam

Speed (in grid spaces): Very slow (2)

The Starcruiser is the slowest, yet strongest ship in the entire fleet. It is able to use the strongest weapons in the game, such as the prototype weapon, codenamed “Blackout”. The Starcruiser is also the only unit in the fleet capable of equipping the Ion Cannon to decimate the enemy’s forces or even destroy planets. In addition to its other weapons, the Starcruiser can wield the Tractor Beam with which to pull opposing forces within range of an assault from other ships in the fleet. The Scryer is the alien equivalent.

Visual Design:
[image: image6.png]

Enemies:

Name/ID:
Drone

Brief Description:
Size (in grid spaces): 1x1 (Small)

Starting Armor: Light

Starting Weapon: Light Laser Cannon

Speed (in grid spaces): Fast (6-8)

 The Drone is the non-player character (NPC) equivalent of the Scout used by the alien forces.

Visual Design:
[image: image7.png]Thes EN&IM'F:{;
~Cany Movg

Name/ID:
Plasma Jet

Brief Description:

Size (in grid spaces): 1x1 (Small)

Starting Armor: Light

Starting Weapon: Light Laser Cannon

Speed (in grid spaces): Fast (4-6)

 The Plasma Jet is the NPC equivalent of the Fighter used by the alien forces.

Visual Design:
[image: image8.png]

Name/ID:
Screamer

Brief Description:

Size (in grid spaces): 2x1 (Medium)

Starting Armor: Medium

Starting Weapon: Medium Laser Cannon, Mines, Stasis Field

Speed (in grid spaces): Medium (4)
 The Screamer is the NPC equivalent of the Gunship used by the alien forces.

Visual Design:
[image: image9.png]

Name/ID:
Supernova

Brief Description:

Size (in grid spaces): 3x1 (Medium)

Starting Armor: Medium

Starting Weapon: Medium Laser Cannon, Proton Torpedoes

Speed (in grid spaces): Slow (3)
 The Supernova is the NPC equivalent of the Battleship used by the alien forces.

Visual Design:
[image: image10.png]

Name/ID:
Scryer

Brief Description:

Size (in grid spaces): 4x2 (Large)

Starting Armor: Heavy

Starting Weapon: Heavy Laser Cannon, Proton Torpedoes, Tractor Beam

Speed (in grid spaces): Very slow (2)

 The Scryer is the NPC equivalent of the Starcruiser used by the alien forces.

Visual Design:
[image: image11.png]

Name/ID:
Mother Ship

Brief Description:

Size (in grid spaces): 50x50 (Huge)

Starting Armor: Impenetrable
Starting Weapon: 4 shield turrets with heavy laser level 3 on each

Speed (in grid spaces): Immovable (0)

 The Mother Ship is the base of operations for the alien invaders, and the final enemy encountered in the game. It is extremely large, so much so that an entire alien colony rests comfortably inside. Due its extreme size, it is unable to move very quickly, if at all, during a combat situation. During combat situations, however, it can quickly release many smaller ships, mostly Drones, in an attempt to divert attention away from it during the battle. The Mother Ship is also armed with extremely heavy defensive armor to defend itself from attack from nearly any source.

Visual Design:
[image: image62.jpg]

Weapons

[image: image63.emf]
Offensive:

Name/ID:
Light Laser Cannon

Brief Description:

The Light Laser Cannon is the basic weapon of the smallest ships, the Scout, and its alien equivalent, the Drone. The beam will travel in a straight line from the firing ship’s cannon to the target.

Damage Dealt:

Deals 50 points of damage to the target. Increases by 10 points with each upgrade.

Visual Design:

The cannon itself will look like a round hemisphere attached to the ship, with a barrel that may be aimed in multiple directions.

[image: image12.jpg]

[image: image13.jpg]

Name/ID:
Medium Laser Cannon

Brief Description:

The Medium Laser Cannon is the basic weapon of the middle-class ships, the Fighter and the Gunship, and their alien equivalents, the Plasma Jet and the Screamer. The Medium Laser Cannon functions the same as the Light Laser Cannon.

Damage Dealt:

Deals 100 points of damage to the target. Increases by 10 points with each upgrade.

Visual Design:

The Medium Laser Cannon looks the same as the Light Laser Cannon; however the beam fired is red instead of green, and the cannon itself is larger.

[image: image14.jpg]

[image: image15.emf]
Name/ID:
Heavy Laser Cannon

Brief Description:

The Heavy Laser Cannon is the basic weapon of the large ships, the Battleship and the Starcruiser, and their alien equivalents, the Supernova and the Scryer. The Heavy Laser Cannon functions the same as the Light and Medium Laser Cannons.

Damage Dealt:

Deals 150 points of damage to the target. Increases by 10 points with each upgrade.

Visual Design:

The Heavy Laser Cannon looks the same as the Light and Medium Laser Cannons; however, the beam fired is blue, and the cannon itself is larger than the Medium Laser Cannon.

[image: image16.jpg]

[image: image17.emf]
Name/ID:
Mine

Brief Description:

The Mine is a special weapon that becomes hidden in a grid-space, and will explode when an enemy unit passes over it, causing a decent amount of damage to the ship. A ship using Mines will only have a limited amount during each battle.

Damage Dealt:

Deals 150 points of damage to the target. Increases by 10 points with each upgrade.

Visual Design:

[image: image18.jpg]

Name/ID:
Proton Torpedo

Brief Description:

The Proton Torpedo is a special weapon utilized by multiple ships to cause a heavy amount of damage from long-range. The Proton Torpedo will have a short cooldown before it can be fired again.

Damage Dealt:

Deals 150 points of damage to the target. Increases by 10 points with each upgrade.

Visual Design:

[image: image19.png]

Name/ID:
Bombs

Brief Description:

The Bombs are a special weapon utilized by the Scout-size ships to cause a large amount of damage to larger ships that have heavier armor, due to the laser cannon capabilities of the smaller ships doing little damage to the armor integrity of the larger ships. A ship using bombs will only have a limited supply of them during each battle.

Damage Dealt:

Deals 150 points of direct damage to the target. Deals 50 points of splash damage to any enemies caught in the blast radius. (Does not affect other planes) Increases by 10 points with each upgrade.

Visual Design:

[image: image20.png]

Name/ID:
Stasis Field

Brief Description:

The Stasis Field is a special weapon used to stop an enemy ship dead in its tracks for a limited time. The Stasis Field, when used, will have a medium-length cooldown before it can be used again.

Visual Design:

The Stasis Field, when a target is affected, looks like a sphere of electricity surrounding the affected target, with electricity jumping from random points on the sphere to other random points on the sphere.

[image: image21.jpg]

Name/ID:
Ion Beam

Brief Description:

The Ion Beam is a special weapon wielded only by the largest ships. The beam has a significant range and will sweep across the field dealing a heavy amount of damage to any ships it hits, usually resulting in complete and utter destruction for the smaller ships. The Ion Beam, once fired, will have a long cooldown before it is recharged and can be fired again.

Damage Dealt:

Deals 300 points of damage to the target. Increases by 50 points with each upgrade.

Visual Design

A large, wide beam, reminiscent of the basic Laser Cannon weapons.

[image: image22.jpg]

Name/ID:
Blackout

Brief Description:

The Star Collapse is a special weapon used by the larger ships to detonate a star from range, causing major damage to any ships in the range of the explosion and turning the star into a black hole. The Star Collapse will have a fairly long cooldown before it may be used again.

Visual Design:

Explosion:

[image: image23.jpg]

Aftermath:

[image: image24.jpg]

Name/ID:
Tractor Beam

Brief Description:

The Tractor Beam is a special weapon utilized by multiple ships to draw an enemy closer to the user. The strength of the pull is different depending on the size of the ship on the receiving end, and pulling a ship of equal or greater size into the user may cause the user or both ships to explode. The Tractor Beam will undergo a short-to-medium cooldown before it can be utilized again.

Pull Strength:

Target with Light Armor: pulled in 3 spaces, increases by one space with each upgrade.

Target with Medium Armor: pulled in 2 spaces, increases by one space with each upgrade.

Target with Heavy Armor: pulled in 1 space, increases by one space with each upgrade.

Visual Design:

[image: image25.png]

Name/ID:
Self-Destruct

Brief Description:

The Self-Destruct is a special attack able to be utilized by any ship. Using the Self-Destruct causes the user to explode, destroying itself and dealing damage to all ships within the range of the explosion, depending on the size of the user, i.e. a Scout self-destructing will deal less damage than a Starcruiser self-destructing. The range of the explosion is also dependant on the size of the user, i.e. a Scout’s explosion will be smaller than a Starcruiser’s.

Visual Design:

[image: image26.png]

Defensive:

Name/ID:
Reflective Shield

Brief Description:
The Reflective Shield is a special defense that may be utilized to increase the ship’s defensive capabilities for a turn, and any Laser Cannon shots made against the user during the enemy’s next turn will bounce off harmlessly while the shield is up, possibly reflecting the shot back at the attacker.

Visual Design:

[image: image27.jpg]

Name/ID:
Evasive Maneuvers

Brief Description:
The Evasive Maneuvers is a special defense that may be used by the smaller-class ships such as the Scout or the Fighter, and their alien equivalents, to increase the user’s chance to dodge most attacks made against the user during the enemy’s next turn.

Visual Design:

[image: image28.jpg]

Name/ID:
Mine Detector

Brief Description:
The Mine Detector is a special ability of the Scout. The Scout will send out a pulse that travels a radius and reveals all land mines in that radius for a short time.

Visual Design:

[image: image29.png]

Upgrade System

Before the upgrade system can be explored, the concept of an expansion slot must be explained. An expansion slot is large enough to contain one of the smallest weapons possible. The control for these slots in terms of size is a Light Laser battery. It will always take one expansion slot. When installed, the ship has access to the offensive capabilities that the Light Laser affords and any subsequent upgrades (up to Level 3).

Each weapon will have a slot requirement. A weapon or defensive capability is a discrete purchasable unit that can then be installed into a ship the player currently possesses. Accordingly, a ship must have at least that many free slots in order to equip and use that weapon.

Additional restrictions may apply based on the weapon. For example, the Ion Cannon is a massive laser charge capable of destroying planets. It wouldn’t make much sense to allow a Scout, the smallest ship possible, to have access to a weapon of that magnitude. It would be like adding 6 subwoofers and a component speaker system to a tiny car without additional amplification: it’d blow out the alternator almost immediately.

There would be room for slight upgrades, however. Let’s go through an example. We start the game at 0 out of 10 points for our army. We buy one Scout at a cost of 1 point so, after purchase, we sit at 1/10. Selecting the Scout, we see that it has 4 expansion slots we can outfit with offensive and defensive capabilities. Using cash on hand, we by a Light Laser battery and install it onto our Scout. The Scout can now fire at opposing enemies using this battery.

After a few missions, we have enough cash to upgrade its Light Laser Battery to Level 3, the final upgrade level. At this point, provided we have the expansion slots free, we have the option to upgrade our Light Laser Battery: Level 3 to Medium Laser Battery: Level 1. Using the alternator analogy above, an additional restriction comes into play. The Scout will be unable to level the Medium Laser Battery beyond Level 2 due to “power requirements”.

This same system will apply to defensive capabilities such as the Evasive Maneuvers engine. It would take up one slot and, when installed, increase the chance of the ship to dodge incoming weapon fire by an additional 25% (arbitrary number).

Upgrades:
Whenever a weapon upgrades, it does so in two areas: damage and range/radius. All beam weapons will visually increase their beam width when upgraded. Explosive weapons will see a visual increase in their blast radius as well as a more compelling explosion at higher levels.

Whenever an ability with an offensive capability, such as the Stasis Field, gets upgraded, it does so in two areas: duration of effect and size of target able to be affected. No additional visual effects will be necessary to convey this.

Whenever a defensive ability gets upgraded, it does so in the area for the benefit it provides. For example, with Evasive Maneuvers, going from Level 1 to Level 2 could increase the chance to dodge from an additional 25% to an additional 30%. A change in color of thrust the engines provide or the color of the shields will be the visual indicator used to convey an upgrade in a defensive ability.

Levels and Maps

Clarification

 All levels are due to change mostly because all levels are on a grid based format. For our level designs a complete level will not be needed. However, any environmental objects will need to be created within our level so that we may place them for balancing. Environmental objects include: planets, stars, black holes, and asteroids. All levels are subject to change to fix any problems with balancing.

Name/ID:
Human Home World

Goal:
 The main goal for the first mission is to immerse the player within the game and get them use to the controls and environment they'll be playing in. Key points of game-play will be shown to the player such as unit selection, environmental hazard and obstacles, and some key parts of combat. Also this tutorial will bring some basics to the player. Teaching the player different scenarios that can occur, such as capturing a star or planet for the economic victory.

Brief Description:
 The Home World will just be a basic tutorial over the more key components of the game. This mission is to prepare a player to set out on their conquest of the solar system. Some basic environment hazards will be present, such as an asteroid belt, planets, and a star. Setting the role of the player as the new space commander for Humanity where they would have to set out into the galaxy and defend humanity from the impending alien invasion.

Back Story:
 The story takes place in the new human home galaxy where the rebellion against the alien forces begins. The original star system that the humans called home had been completely destroyed. However, most of the population had managed to escape and find a new star system in which they could survive. Now the humans prepare to revolt back against the alien forces in retribution for the crimes against them.

Visual Design

 The human home world is a small galaxy with a red giant for the main star of the area. Only three planets revolve around this star. Two of the planets revolve near the center of the star and also revolve around one another. The current human planet seems to have the same similarities as Earth; however, the atmosphere has a maroon-red color instead of a bright blue sky.

 [image: image30.jpg]

Name/ID:
Asteroid Belt

Goal:
 Destroy any remnants of the alien forces still residing in the area.

Brief Description:
 Since this is the first intense combat mission, the player will receive most of the difficulty from the environment and not from enemy oppression. Mostly the area will contain the remnants of planets and just seems dead, aside from the ships. The area has a red glow from the planets that had been destroyed. Their cores becoming space dust and expanding out over the asteroid field.

Back Story:
 This is the original star system for the humans, and first major loss in the fight for humanity. The asteroid belt use to be rich with life and peace until the alien invaders came. They had shown no mercy to the peace-loving people and completely destroyed any planets that came in their way. This ignited the flames of war and sent the human race a clear message that a peaceful resolution could not be reached.

Visual Design:

 An empty environment with lots of small asteroids scattered about the level. A large nebulous can be seen in the distance far beyond the asteroid belt.

Name/ID:

 Nebulous

Goal:
 Capture all available resources before the aliens. The level is completed when either all resources are taken by one side or no enemy units remain. The level is lost when all the player units are destroyed or all the player's planets are destroyed.

Sub-Goals:
 Destroy/Capture any alien claimed worlds.

Brief Description:
 The nebulous is a cloudy area full of a different assortment of stars. The stars are placed in groupings depending on size, color and shape. The nebulous has main color of purple due to the amount of blue and red giants. Any asteroid that enters any of the clusters of stars is instantly burned to cinders just due to the heat. The nebulous at its core is an area of fire and death that the aliens use as their main source of power.

Back Story:
 The nebulous contains the main source of resources for the alien invaders. This area is discovered by the humans by a mere chance from following a fleeing unit. The humans then decide to take this area for themselves in order to strain the enemy forces.

Visual Design:

 Much like our own solar system, with planets scattered about. The number of planets can vary from 1 to 5 stars, each with its own distinct color. The area may contain an assortment of white dwarfs, red giants, or blue giants.

Name/ID:
Black Hole

Goal:
 Escape the expanding black hole while under fire from the opposing alien forces. A set checkpoint will have to be reached in order to complete the level. The level is either completed when all the player's units either reach the check point or destroyed. Victory will be determined based on a unit's lost counter, if this counter has not reached its max; the player has successfully cleared the level.

Brief Description:
 The black hole is on the outer rim of space. One of the hardest missions as it’s an extra level for the player to get through. A player must escape the ever expanding black hole which keeping their units alive while under fire from the enemy. The black hole starts out relatively small portion of the screen but quickly expands. Particles of light and astral dust are swirling towards the center of the black hole.

Back Story:
 A few planets are floating around in free space where the sun use to be. However, due to recent activity in the area the black hole has started to expand and engulf everything within its reaches. According to story, the player has been sent here due to a miscalculation in the jump drive and ended up on the other side of space due to miscalculation.

Visual Design:

 The Black hole is exactly how it sounds. An environment which contains a black hole and sucks everything into itself. The black hole is located in the center with several planets rotating about. These can just be generic planets of reds and browns due to no sun inhabiting the area for life to grow on these planets.

Name/ID:
 Alien Home World

Goal:
 Destroy the alien mother ship and end the invasion.

Brief Description:
 This is the final level in the game and the most difficult. However, this is only one enemy on this level and that is the mother ship of the alien fleet. This is the largest of any of the previous vessels and takes up a massive chunk of the map.

Back Story:
 The final frontier to the alien fleet is the Mother-ship itself. The aliens have existed here for eternity destroying any planets and capturing stars to keep their mother-ship up and running. A large collection of stars have been brought to this location however only those stars and the mother-ship are located in this area. The alien civilization stands atop the mother-ship within a glass dome. Destroying this will not only end the war but their entire alien race.

Visual Design:

 A desolate area mostly full of a random assortment of stars in the area from the alien collection to keep the mother ship running. Most of these would be present in the background unaccessable to the player with only the alien mother-ship present within the grid.

Scenarios

Scenario:

Destroy all Enemies

Goal:
 Destroy all enemies present in the player's location.

Brief Description:

The most common challenge for a battlegrounds. A player must destroy all enemies within an area to complete the mission. Planets may be made avaiable depending on map set up.

Scenario:

Capture X Celestial Bodies

Goal:

 Capture X the avaible celestial bodies within the sector.

Brief Description:

 A moderate challenge depending on senario. The player will have to capture X the avaible celestial bodies within the sector. This may be impedded through alien intervention as well as other properties.

Scenario:

Escape

Goal:
 Escape the current sector.

Brief Description:
 A difficult challenge depending on senario. The player will have to escape the senario while keeping most of his units alive. This can also be turned into a turn based system where the player must reach a certain destination within a certain amount of turns.

Environmental Objects

Name/ID:

Planets

Interactions:
 The planet can be used for cover from enemy ships and cannot be shot through or collided with. The only weapon capable of destroying a planet is the Ion Beam, which will completely remove the planet and put X asteroids in its place dependant on size.

 All planets can be captured for a onetime bonus of currency and a multiplier at the end of scenario. The bonus goes to the first side that captures the planet, and the multiplier is lost until the player recaptures the planet.

Visual Design:

[image: image31.jpg]Ganymede Titan Mercury Callisto
5262 km 5150 km 4880 km 4806 km
Moon Europa Triton Pluto Titania

3642 km 3476 km 3138 km 2706 km 2300 km 1580 km

The Largest Moons and Smallest Planets © Copyrgiht 1999 by Calvin J. Hamilton

Name/ID:
Stars

Interactions:

 Stars can be used for cover from opposing ships. The star cannot be shot through, however, when a unit collides with a star it will be instantaneously destroyed. The only weapon capable of destroying a star is the Black Out weapon. When destroyed the star has a chance of becoming a black hole, otherwise the star just diffuses and fizzles out.

 Stars act the same as planets when captured, and follow the same rules. However, only Battleships and Starcruisers are able to capture planets due to the heat from the star.

Visual Design:

[image: image32.jpg]

Name/ID:
Wormholes

Interactions:
 Wormholes can be collided with by any ship when placed on a grid. The wormhole will take the unit and randomly move the ship to a new location within the grid. The unit can be moved to any level and any location on the grid that is not already taken by an un-collidable object.

Visual Design:

[image: image33.jpg]

Name/ID:

 Asteroids

Interactions:
 Asteroids are smaller objects that occupy any space within the level. The asteroid itself does not take a space on its own and can be collided with by ships. The asteroid then does damage depending on the size of the ship, however, the scout is the only ship that can move through the asteroids and receive no damage. All asteroids are destructible by any ship.

Visual Design:

[image: image34.jpg]Dactyl
>

s Tempel 1

Name/ID:
Black Holes

Interactions:

The black hole can either be expanding or static. When the black hole is expanding, the radii will grow by 1 unit space per round (an enemy and player turn). The black hole itself pulls all objects towards it center, this includes ships, planets, stars, and asteroids, this excludes wormholes. When any object enters the radii of the black hole, the object is sucked into the black hole and destroyed.

Visual Design:
[image: image35.jpg]

Art and Production Design

Art & Animation Style

The theme of the game is patient combat, not too fast, but not too slow either. Since most of the game will be spent thinking about the next move, we want players to feel like they want to take their time, but they can still jump in there if need be.

We want our ships to basically be a mixture of cartoonish and realistic where it can be certain that these aren’t real ships, and most likely they wont ever be, but with enough realism where it doesn’t look like the ship from Looney Tunes. The ships should be unique and very distinct where as a ship could be easily identified by its silhouette. There aren’t many animations in our game except for the explosions. For those we want epic, huge animations that spread pieces all over the place; for the stars, when they become black holes we want them to implode on itself, and when it hits maximum, explode upwards, creating the black hole.

Sound Effects Style

The sound effects should sound like they are coming from a battlefield similar to Star Wars. Loud distinct sound effects, no cartoonish sound effects for the attacks, and explosions, but outside of battle, things should be kept softer so as not to disturb the ambience of space.

Music Style

The music in the game is mostly ambient. It blends in with the gameplay to not only immerse the player into the game, but to also calm the player down so that they can think. We don’t want too much upbeat music because we don’t want the mood to feel rushed if the player is not in battle.

 Storyboards and Sample Art

[image: image36.jpg]&a»@‘?“v / Blaner v
©

Tiames * Oveen SORL>

Interactivity

Main Goal

The main goal of the game is to stave off the alien invasion by destroying the alien mother-ship. For a player to achieve this goal, the player will have to build up an army strong enough to defeat the mother-ship and the minions it can create. By completing the sub-goals, the player can build a stronger army to take on the mother-ship's forces. Reducing the mother-ship’s defenses to zero will destroy the mother-ship and complete the game for the player. The mother-ship has no special defenses and can be destroyed by any ship, but due to the amount of defense the mother-ship has, a single unit cannot destroy the mother-ship.

Sub Goal 01: Getting Started

The first sub-objective of the game is to complete the tutorial stage. To complete this stage the player must complete the three basic tasks within the game. The first task is to capture a planet, which entails moving a unit towards a celestial body and taking it over. The second task is a small scale version of combat on a single plane. Three enemy units will appear and the player will have to destroy the enemy vessels. After this second task the player must then complete a second combat task which involves the multiple planes. After destroying this second wave, the scenario is complete and the player can move to the next level.

Sub Goal 02: Regaining Ground

After the player has completed the tutorial, the player will be sent to an area for his or her first full combat scenario. The player will have to destroy all enemy units to complete this scenario. Once all enemy units are destroyed, the player has completed the scenario and is able to advance to the next level.

Sub Goal 03: Taking it Home

The third mission for the player is to capture 3-5 celestial bodies. Enemy units will be set in place original, and after all units are destroyed, they’ll be reinforced after a few turns. The player must use his or her tactics to capture the set amount of celestial bodies before all of his or her units are destroyed. Capturing the set amount of celestial bodies will complete the scenario and the player will advance to the next level.

Sub Goal 04: Miscalculations

The player is on his or her way to the final scenario in the game, however, the guidance unit miscalculated and ended up sending the fleet to the wrong coordinates. The area is a black hole, and the player must escape the area in order to complete the scenario. In order to accomplish this task, the player must reach a set tile(s) on the map with 1/3 of his or her ships. Enemy units will impede the player, and the black hole slows all movement. Once 1/3 of the ships have reached the set tile(s), the scenario is complete, however, the scenario will not terminate until all player ships either escape or are destroyed.

Basic Controls

Keyboard and Mouse:

Primary

· Mouse (point and click)

Secondary

- Keyboard (reinforce menu navigation)

· Controller

Mouse – Move cursor; perform actions on the battle screen.

Left Mouse Button – Accept/Select

Right Mouse Button – Go back to the previous menu

Arrow Keys – Navigate Menus

Enter – Accept

Escape – Exits back to the front end

F1 – Game help

P – Pause

I - Show/Hide Interface

Space – Switch active plane (when moving, shows available places to move on that plane)

Shift – Show/Hide HP

In-Game

Tab – Go through list of available units when moving, go through available targets when attacking.

Controller:
Joystick – move cursor

D-Pad – navigate menus

A – Accept/Select

B – Back

Y – Show/Hide HP

X - Show/Hide Interface

Start – pause game

Select – Switch active plane (when moving, shows available places to move on that plane)

Left Bumper – Go through list of available units when moving, go through available targets when attacking.

Right Bumper - Go through list of available units when moving, go through available targets when attacking.

Interface

The game interface will not be the main focus of the game so the HUD will have to small in comparison to the rest of the game. The HUD should only ever be used to gather extra information on the current surroundings. Such as how a ship’s statistics are, or where a ship is in accordance to a mini-map. Alternatively, a menu for options and settings, along with quit options, is also within the HUD if needed by the player.

The HUD should have the style of the GTA HUD. The small mini-map holds the location of all the ships and information of the currently selected ship. However, the appearance should be closer to the Meteoroid Prime, for the GameCube, style, using the lighter colors or greens to stand out against the primarily black background.

[image: image37.jpg]GAMEPLAY

UnitName ~ HP | Menu
Armor |Option:

Image Class |Resign
Quit

Main Menu

The Main Menu background is the last screen of the introduction cutscene. It will have four (4) options available to the player: Play, Options, Credits and Exit.
Selecting Play will replace the four options with New and Load Profile. Selecting New will prompt the player to enter a name for their fleet. Selecting Load Profile will bring up a list of saved fleet names, allowing the player to select the appropriate one. After either of these options is executed, the player is brought to the Overworld map.

Selecting Options will replace the four options with the settings the user is able to adjust in the game. These are Gamma, Background Music Volume, and Effects Volume.

Selecting Credits will replace the four options with a scrolling list of the credits. The credits will scroll from the bottom of the screen upwards and disappear before they hit the Supernova Blindside title.

Selecting Exit will replace the four options with the text “Are you sure?” followed by “Yes / No” on the next line.

[image: image38.png]Mazey Mene

SUPEROVA|

tumm%

Overworld

The overworld is where the player tracks their progress through the game. Progression is linear starting with Stage 1, the new Remnant homeworld. The current stage of progression is highlighted to let the player know where he is going next. There are three options at this point: Enter the stage, Save or go to the Nova Hangar. Entering the stage transitions the player to the Briefing Room. Heading to the Nova Hangar will allow the player to augment their fleet.

[image: image39.png]

Briefing Room

The Briefing Room places the selected stage in the center of the screen flanked on either side by a panel. These panels will detail what’s going on in the stage and what kind of resistance the player is likely to face. Two options are present at this point: Enter the stage or access the Nova Hangar to make any last minute adjustments to the fleet.
[image: image40.png]

Pause

The Pause Menu has three options open to the player: Resume, Save, and Quit. Resume allows the action of the game to continue. Save automatically saves the player’s game under their fleet’s name. Quit returns the player to the Main Menu after asking if he wants to save before quitting.
[image: image41.png]

Icons

[image: image42.png]WeRPoN

Cocegen Vignae AT Te TROICATE
Posgr LiEve

H‘G WLIGHT
Levee l-l Rep
LevgL 20 Cranie (BLUWE2 CRANGE Too aTamsiad To Res?)

Levee %8 Gmrep

Nova Hangar

The Nova Hanger is explained in the section Upgrade System.

[image: image43.png]iy THL AT .,moiuéw%b

o eI

of ddd7 G Ju——
2pE A
AL st e P &
S/ ELTIRAN ﬁ NI TR
(g | Rl -
/ A AR INE

Interactive Rhythm

The sense of time for the player should feel like the battle is happen all within a few minutes once started. However, a typical play session for a single level can be between 3-15 minutes depending on scenario, and for the entire game 30-45 minutes for a complete scenario.

Mostly the replay-able parts of the game will come not from the campaign but from the scenario creator. This will randomly generate a level based on some values and give a unique scenario for nearly every play.

The only time the player is not in control is during the enemy’s turn; to have this be interesting to the player this will have to be relatively quick so the player doesn’t lose interest. After all, no one wants to wait while the compute takes 3 minutes to calculate a turn.

Since this is a turn based game, all kill times will be based on turn values with no upgrades.

Turns to kill a unit:

	
	Scout
	Fighter
	Gunship
	Battleship
	Cruiser

	Scout
	2-4
	3-5
	4-6
	5-7
	6-8

	Fighter
	1-2
	2-4
	3-5
	4-6
	5-7

	Gunship
	1
	1-2
	2-4
	3-5
	4-6

	Battleship
	1
	1
	1-2
	2-4
	3-5

	Cruiser
	1
	1
	1
	1-2
	2-4

How the Player Marks Progress

Since all stages are available for play from the start, the player will be able to mark progress by seeing his or her armada's point cap increase following the completion of a stage. Additionally, upgrades to the player’s currently owned ships and increasing credit balance will be other ways to mark progress.

Progress per scenario, depending on the scenario, different information will be placed within the HUD for player’s knowledge. Such as a counter for how many ships have escaped, or how many planets are captured, etc. The player will be visibly able to tell whether he or she is doing well or poorly based on how many of his or her own units remain compared to the enemy's units.
Detailed Design Breakdown

Front End Flow Chart

[image: image44.jpg]Start Game

Start Application

> 4

Class Logo for 3
uninterruptible
seconds

b =

Team Logo for 3
uninterruptible
seconds

Game
Introduction

¥

Title Screen

> 2

Main Menu

Overworld Map

Game
Options

End Application

Was player in
combat at last
save?

Resume Combat

Game Flow Chart (Part 1)

[image: image45.jpg]Overworld

Map

,| Start Player |
Turn

Do any Units have
remaining Moves/
Actions?

=

Briefing
Screen Select Unit
No
Sep Can Unit Move of
take an Action?
Move Uit to new
Yes location
Battle |- @
Can Unit Move?)
No
) _[Can Unitake an °
Primary Objective Ao
completed?
Yes y
Resalve Action
(See part 2)
Results Unit forfeis all
Screen) remaining
T "@ *Moves/Actions
for the Turn
Victory |
& Are all enemy
forces dea
s Are any player
@ @ Eteayy It "l Units alive?

Yes.

No

Game Flow Chart (Part 2)

[image: image46.jpg]Start of Resolve
Action

: Chooss Calculate and

Choose Action Target Deal Damage

Increase Defense
based on chosen
defense-type

v
End of Resolve
Action
T

5 Unit i range of
! planel/sta

Capture
planet/star

Glossary of Terms

Attributes

· Attack Range: The maximum distance, in grid spaces, a Unit can be away from a target enemy and still attack that target enemy

· Capture Bonus: The amount of currency gained from capturing a planet or star

· Expansion Slots: The location of weapons and upgrades being used by a Unit; each unit has a different amount of Expansion Slots, based on its size; weapons and upgrades consume a varying number of Slots, based on the strength of the weapon or upgrade

· Damage: How strong a weapon is; the higher the damage, the more damage dealt to the target

· Evasion: The chance for a unit to dodge enemy attacks; the higher the chance, the more often the unit will dodge

· HP: The Hit Points of a Unit, HP is a measurement of the amount of damage a Unit can sustain before it is destroyed

· Level: The current state of an upgrade, such as weapon or armor; Starts at 1, and can be increased to 2, and then to 3, each time increasing the damage/range of a weapon or the mitigation provided by a piece of armor

· Mitigation: How strong an armor is; the higher the mitigation, the less damage taken by the unit wearing the armor

· Movement Range: The maximum number of grid spaces a Unit can move in a turn; moving between planes costs one grid space of movement

· Point Value: The amount of points a unit is worth, a general indicator to the overall strength of the unit; the smaller the number, the more of that unit can be used in the player’s fleet

· Size: The number of grid spaces occupied by the Unit, written as “<length>x<width>”; if used to refer to a planet, star, or black hole, Size refers to the radius, in grid spaces, of the object

Behaviors

· Attack: Use a weapon to deal damage to an enemy Unit within the attacker’s Attack Range

· Collapse: When hit by the Blackout weapon, a star has a chance to collapse, forming a black hole in its place

· Defend: Decrease the amount of damage dealt to the defending Unit until the next turn in which the Unit can act

· Detonate: When hit by the Blackout weapon, a star has a chance to explode, causing damage to units in a radius, based on size of the star

· Die: When a Unit’s HP reaches zero, the Unit is removed from the battle

· Expand: Each turn a black hole is active, it will grow in size

· Move: Travel a distance, measured in grid spaces, no greater than the moving Unit’s Movement Range

· Skip: The Unit cannot Move, Attack, or Defend on the Turn in which it uses this action

· Upgrade: Increase the damage/range of a weapon or the mitigation provided by a piece of armor

Ships

Name/ID:
Scout/Drone
Brief Description:
The lightest and quickest unit in the fleet, the Scout unit can move quickly through the lines to find enemy units and possible troops. The Scout is the only ship able to detect mines. Scouts can also pass through asteroid fields with no damage. The Scout is able to use Bombs and Mines to damage larger ships, due to its weaker Laser Cannon capabilities, and also gain the Evasive Maneuvers special defense to better dodge the enemy’s attacks. The alien equivalent to the Scout is the Drone.

Tactics:

While the Scout is small, fast, and has low HP, the general tactics of use for the Scout is to swarm the opponent with them, and overcome the enemy with numbers.
Behaviors:
Move

Attack

Defend
Die

Skip

Attributes:
Attack Range: 10

Expansion Slots: 4

HP: 300

Movement Range: 8

Point Value: 1

Size: 1x1

Visual Design:
Scout:

[image: image47.png]

Drone:

[image: image48.png]Thes EN&IM'F:{;
~Cany Movg

Name/ID:
Fighter/Plasma Jet

Brief Description:

The Fighter is the basic attack unit of the fleet. Along with its quick speed and durability, the Fighters rely on strength in numbers. This is the bulkier version of the Scout meant for combat. The Fighter can also be equipped with Medium Laser Cannons, upgraded from Light Laser Cannons and Proton Torpedoes, and gain the Evasive Maneuvers ability. The Fighter’s alien equivalent is known as the Plasma Jet.

Tactics:
The main use for the Fighter is a more resilient, albeit slower version, of the Scout with which to swarm the opposition in numbers. Less are necessary in the swarm, however, due to heavier firepower.

Behaviors:
Move

Attack

Defend

Die

Skip

Attributes:
Attack Range: 25

Expansion Slots: 6

HP: 500

Movement Range: 6

Point Value: 3

Size: 1x1

Visual Design:
Fighter:

[image: image49.png]

Plasma Jet:

[image: image50.png]

Name/ID:
Gunship/Screamer

Brief Description:
The larger version of the Fighter, the Gunship is armed for combat. Armed to the teeth, the Gunship is meant for taking multiple units at once while sacrificing its speed. In addition to its Medium Laser Cannon, the Gunship can use Mines to damage enemy forces, and it can use the Stasis Field to immobilize opponents. The alien equivalent of the Gunship is called the Screamer.

Tactics:

The Gunship’s main use is to damage enemies from a longer range than the Scouts or Fighters with its heavier firepower.
Behaviors:
Move

Attack

Defend
Die

Skip

Attributes:
Attack Range: 35

Expansion Slots: 8

HP: 750

Movement Range: 4

Point Value: 5

Size: 2x1

Visual Design:
Gunship:

[image: image51.png]

Screamer:

[image: image52.png]

Name/ID:
Battleship/Supernova

Brief Description:
The Battleship is essentially a larger, slower version of the Gunship. However, it can be upgraded to utilize Heavy Laser Cannons and its armor can be upgraded to use the Reflective Shield ability. The Battleship is also capable of wielding the powerful Proton Torpedoes to damage enemies from afar. The alien equivalent is known as the Supernova.

Tactics:
Blast the enemies from a long range with heavy firepower.

Behaviors:
Move

Attack

Defend

Die

Skip

Attributes:
Attack Range: 40

Expansion Slots: 10

HP: 1500

Movement Range: 3

Point Value: 7

Size: 3x1

Visual Design:
Battleship:

[image: image53.png]

Supernova:

[image: image54.png]

Name/ID:
Starcruiser/Scryer

Brief Description:
The Starcruiser is the slowest, yet strongest ship in the entire fleet. It is able to use the strongest weapons in the game, such as the prototype weapon, codenamed “Blackout”. The Starcruiser is also the only unit in the fleet capable of equipping the Ion Cannon to decimate the enemy’s forces or even destroy planets. In addition to its other weapons, the Starcruiser can wield the Tractor Beam with which to pull opposing forces within range of an assault from other ships in the fleet. The Scryer is the alien equivalent.

Tactics:
Blast the enemies from a long range with heavy firepower.

Behaviors:
Move

Attack

Defend

Die

Skip

Attributes:
Attack Range: 45

Expansion Slots: 12

HP: 2500

Movement Range: 2

Point Value: 9

Size: 4x2

Visual Design:
Starcrusier:

[image: image55.png]

Scryer:

[image: image56.png]

 Name/ID:
Mother Ship

Brief Description:

 In the Mother Ship scenario, the Mother Ship will be stationary the entire time, taking energy from a very large star to power itself, but it will be nigh-immune to damage, due a shield generated by four shield generators. These generators must be destroyed before the shield falls and leaves the Mother Ship vulnerable to attack. After the first one is destroyed, the Mother Ship will deploy two Drones to distract the player. After the second is down, one Drone and one Screamer will be deployed. After the third, one Drone and one Supernova are deployed. After the fourth, one Scryer, two Drones, one Supernova, and one Screamer are deployed. After the fourth generator is destroyed, the shield will fall. At this point, the player must use the Blackout weapon to destroy the star, destroying the Mother Ship in the process, and winning the game.
.

Behaviors:
Attack

Defend

Die

Skip

Attributes:
Attack Range: 55

HP: 5000

Movement Range: 0

Size: 50x100

Visual Design:

Weapons

For more information see the Interaction Matrix spreadsheet. All damage and reactions for weapons, defensive and offensive, are within the Interaction Matrix.

Offensive:
Name/ID:

Light Laser Cannon

Brief Description:

The Light Laser Cannon is the basic weapon of the smallest ships, the Scout, and its alien equivalent, the Drone. The beam will travel in a straight line from the firing ship’s cannon to the target.

Attributes:

Damage

Cool-down

Levels

Slots

Usability

Behaviors:

Levels: 1-3

Damage: 40 + 10 * Level

Cool-down: 0

Slots: 1

Usability: All Ships

Visual Design:

The light laser cannon are a small linear turret. The base is a hemisphere for the humans and a shard for the aliens. The laser can have anywhere from one to three turrets at any given time. The three turrets should move in sync with each other and be parallel to one another. When fired, the laser will appear as green.

Name/ID:

Medium Laser Cannon

Brief Description:

The Medium Laser Cannon is the basic weapon of the middle-class ships, the Fighter and the Gunship, and their alien equivalents, the Plasma Jet and the Screamer. The Medium Laser Cannon functions the same as the Light Laser Cannon.

Attributes:

Damage

Levels

Cool-down

Slots

Usability

Behaviors:

Levels: 1-3

Damage: 90 + 10 * Level

Cool-down: 0

Slots: 2

Usability: All Ships, Light ship can only upgrade to Level 2.

Visual Design:

The Medium Laser Cannon looks the same as the Light Laser Cannon; however the beam fired is blue instead of green, and the cannon itself is larger.

Name/ID:

Heavy Laser Cannon

Brief Description:

The Heavy Laser Cannon is the basic weapon of the large ships, the Battleship and the Starcruiser, and their alien equivalents, the Supernova and the Scryer. The Heavy Laser Cannon functions the same as the Light and Medium Laser Cannons.

Attributes:

Damage

Levels

Cool-down

Slots

Usability

Behaviors:

Levels: 1-3

Damage: 140 + 10 * Level

Cool-down: 1

Slots: 3

Usability: Medium size ships and up, Medium ships can only upgrade to Level 2.

Visual Design:

The Heavy Laser Cannon looks the same as the Light and Medium Laser Cannons; however, the beam fired is red, and the cannon itself is larger than the Medium Laser Cannon.

Name/ID:

Mine

Brief Description:

The Mi
ne is a special weapon that becomes hidden in a grid-space, and will explode when an enemy unit passes over it, causing a decent amount of damage to the ship. A ship using Mines will only have a limited amount during each battle.

Attributes:

Damage

Cool-down

Levels

Slots

Usability

Behaviors:

Levels: 1-3

Damage: 250 + 50 * Level

Cool-down: 4

Slots: 1

Usability: Gunship and smaller only

Visual Design:

A small bomb with an underwater mine look. There are several spikes sticking out from the center along with an energy core in the middle. The core gives off a blue or white light when fired, and then quickly dims to conceal itself from the opponent.

Name/ID:

Proton Torpedo

Brief Description:

The Proton Torpedo is a special weapon utilized by multiple ships to cause a heavy amount of damage from long-range. The Proton Torpedo will have a short cooldown before it can be fired again.

Attributes:

Damage

Levels

Cool-down

Slots

Usability

Behaviors:

Levels: 1-3

Damage: 140 + 10 * Level

Cool-down: 2

Slots: 2

Usability: Gunship and smaller only.

Visual Design

A small missile with a yellow glow. The missile has the look of an laser with a yellow glow, however, there are several particles swirling around the outside of the laser. These particles leave trails to make it seem as if the missile is spinning as it travels forward.

Name/ID:

Bombs

Brief Description:

The Bombs are a special weapon utilized by the Scout-size ships to cause a large amount of damage to larger ships that have heavier armor, due to the laser cannon capabilities of the smaller ships doing little damage to the armor integrity of the larger ships. A ship using bombs will only have a limited supply of them during each battle.

Attributes:

Damage

Splash Damage

Splash Radius

Levels

Slots

Cool-down

Usability

Behaviors:

Levels: 1-3

Damage: 150 + 10 * Level

Splash Damage: 40 + 10 * Level

Splash Radius: 3

Cool-down: 3

Slots: 1

Usability: Light ships only

Visual Design:

When the bomb is used a small white sphere is visible with a tail following. The bomb can only fall downward so there is no other need for propulsion or wings for direction.

Name/ID:

Stasis Field

Brief Description:

The Stasis Field is a special weapon used to stop an enemy ship dead in its tracks for a limited time. The Stasis Field, when used, will have a medium-length cooldown before it can be used again.

Attributes:

Ability: Frozen

Levels

Slots

Usability

Cool-down

Behaviors:

Levels: 1-3

Ability: Frozen

The Stasis field freezes the unit in place for 2 turns.

Cool-down: 6 – 1 * Level

Slots: 2

Usability: Light Ships Only

Visual Design:

The Stasis Field, when a target is affected, looks like the ship is frozen in a gem. The gem is impregnable with the two points of the gem being at the front and back sides of the ship. The rest resembles a freshly cut gem covering the entire ship.

Name/ID:

Ion Beam

Brief Description:

The Ion Beam is a special weapon wielded only by the largest ships. The beam has a significant range and will sweep across the field dealing a heavy amount of damage to any ships it hits, usually resulting in complete and utter destruction for the smaller ships. The Ion Beam, once fired, will have a long cooldown before it is recharged and can be fired again.

Attributes:

Damage

Levels

Slots

Usability

Cool-down

Behaviors:

Levels: 1-3

Damage: 250 + 50 * Levels

Slots: 6

Usability: Large ships only

Cool-down: 5

Visual Design:

A massive beam attack from a large particle cannon. The cannon itself is comprised of two sides which form into an egg like structure when closed. When the top half of the structure is opened, a large cannon is exposed with a round center for the barrel. The beam itself is white with a blue hint on the outer edge.

Name/ID:

Black Out

Brief Description:

The Star Collapse is a special weapon used by the larger ships to detonate a star from range, causing major damage to any ships in the range of the explosion and turning the star into a black hole. The Star Collapse will have a fairly long cooldown before it may be used again.

Attributes:

Ability: Star Collapsing

Levels

Slots

Usability

Cool-down

Behaviors:

Levels: 1-3

Ability: Star Collapsing

The Black Out can only be used on stars to cause them to collapse, therefore, the Black Out does no damage to ships.

Slots: 6

Usability: Starcruiser only

Cool-down: 3

Visual Design:

The Blackout is a bomb that causes an implosion instead of an explosion. The visual effect will start as a black dot within the center of a star, and then the star will begin to collapse in on itself. Visually, this collapse will appear as if the star were being eaten from the inside out by having the sides collapse inward followed by the rest of the star.

Name/ID:

Tractor Beam

Brief Description:

The Tractor Beam is a special weapon utilized by multiple ships to draw an enemy closer to the user. The strength of the pull is different depending on the size of the ship on the receiving end, and pulling a ship of equal or greater size into the user may cause the user or both ships to explode. The Tractor Beam will undergo a short-to-medium cooldown before it can be utilized again.

Attributes:

Ability: Pull

Levels

Slots

Usability

Behaviors:

Levels: 1-3

Ability: Pull

The Tractor Beam pulls the unit in 3 * Level spaces.

Slots: 2

Usability: Large ships only

Visual Design:

The tractor beam is a beam of rings that gradually grow larger as they travel farther. The tractor beam itself is green and dims as it goes farther.

Name/ID:

Self-Destruct

Brief Description:

The Self-Destruct is a special attack able to be utilized by any ship. Using the Self-Destruct causes the user to explode, destroying itself and dealing damage to all ships within the range of the explosion, depending on the size of the user, i.e. a Scout self-destructing will deal less damage than a Starcruiser self-destructing. The range of the explosion is also dependent on the size of the user, i.e. a Scout’s explosion will be smaller than a Starcruiser’s.

Attributes:

Damage

Splash Damage

Splash Radius

Usability

Behaviors:

Damage: Current HP * Size

Splash Damage: Damage * 0.5

Splash Radius: 2 * Size

Usability: All Ships

Visual Design:

A massive explosion with small parts of the ship expanding outwards. The self-destruct attack will be shown as bright light shinning from the center of the ship in rays then explode.

Defensive:

Name/ID:

Armor

Brief Description:

Armor is the basic defense for any ship. A player can spend his or her turn just to enact a normal defense based on their armor ability. Armor is given with the ship, however, can be upgraded and changed for other ships. The three classes of armor are: Light, Medium, and Heavy.

Attributes:

Levels

Light

Medium

Heavy

Slots

Mitigation

Usability

Behaviors:

Levels: 1-3

Light

Usability: All Ships

Slots: 1

Mitigation: 20 + 5 * Level

Medium

Usability: Gunship and up

Slots: 2

Mitigation: 45 + 5 * Level

Heavy

Usability: Battleship and Starcruiser only

Slots: 3

Mitigation: 70 + 5 * Level

Name/ID:

Reflective Shield

Brief Description:

The Reflective Shield is a special defense that may be utilized to increase the ship’s defensive capabilities for a turn, and any Laser Cannon shots made against the user during the enemy’s next turn will bounce off harmlessly while the shield is up, possibly reflecting the shot back at the attacker.

Attributes:

Ability: Reflection

Levels

Slots

Cool-down

Usability

Behaviors:

Levels: 1-3

Ability: Reflection

Only Medium Size ships can use the reflectors.

Take no damage, also has a 20% + 15% * Level chance to reflect back at the enemy.

Slots: 2

Cool-down: 3

Usability: Medium ships only

Visual Design:

The reflector shield can appear with the same formation of the shield, however, instead of being solid the reflector shield is composed up of hexagons like the grid. The reflector shield is clearly visible to any side and has a blue hint to the shield on the outer sides of the hexagons with a white glow in the center.

Name/ID:

Evasive Maneuvers

Brief Description:

The Evasive Maneuvers is a special defense that may be used by the smaller-class ships such as the Scout or the Fighter, and their alien equivalents, to increase the user’s chance to dodge most attacks made against the user during the enemy’s next turn.

Attributes:

Ability: Dodge

Levels

Slots

Usability

Behaviors:

Levels: 1-3

Ability: Dodge

Small: 15% + 5% * Level

Medium: 10% + 5% * Level

Large: 5% + 5% * Level

Slots: 1

Usability: All Ships

Visual Design:

Evasive maneuvers would be more of a tactic and thus lacks a visual design. However, the design could be some small lines rising around the ship, or a larger glow around the engines.

Name/ID:

Mine Detector

Brief Description:

The Mine Detector is a special ability of the Scout. The Scout will send out a pulse that travels a radius and reveals all land mines in that radius for a short time.

Attributes:

Ability: Detect Mines

Radius

Levels

Slots

Usability

Behaviors:

Levels: 1-3

Ability: Detect Mines

All mines in play become visible if within range.

Radius: 4 + 2 * Level

Slots: 1

Usability: Scout Only

Visual Design:

There is no visual description for the mine detector itself, as it’s an ability within the scout. However, the pulse of the mine detector can be seen as a dim blue ring expanding from the center of the scout.

Levels and Maps

Clarification

 All levels are grid based and thus all have the same level size of 100x100 grids. The grid itself is composed of hexagons in a circular format. All sides of the hexagon are uniform from its center.

Also, level travel is all based per unit to cross the grid. See Characters for speed.

 Secondly, all environmental objects will use the same sounds for how they interact with the game, whether a star collapses or a planet explodes. See Environmental Objects for more details.

Name/ID:

 Human Home World

Goal:

 The main goal for the first mission is to immerse the player within the game and get them use to the controls and environment they'll be playing in. Key points of game-play will be shown to the player such as unit selection, environmental hazard and obstacles, and some key parts of combat. Also this tutorial will bring some basics to the player. Teaching the player different scenarios that can occur, such as capturing a star or planet for the economic victory.

Time:

 Average Completion time: 3 minutes

 Travel Time: 30 seconds

 Battle Time: 2 Minutes

Map:

 [image: image57.png]

Name/ID:

 Asteroid Belt

Goal:

 Destroy any remnants of the alien forces still residing in the area.

Time:

 Average Completion time: 5:45 minutes

 Travel Time: 1:30 Minutes

 Battle Time: 2:30 Minutes

Map:

[image: image58.png]

Name/ID:

 Nebulous

Goal:

 Capture 3-5 celestial bodies before the aliens. The level is completed when either 3-5 celestial bodies are taken by one side or no enemy units remain. The level is lost when all the player units are destroyed or all the player's planets are destroyed.

Time:

 Average Completion time: 10 minutes

 Travel Time: 2 Minutes

 Battle Time: 4 Minutes

 Capture Time: 2 Minutes

Map:

Name/ID:

 Black Hole

Goal:

 Escape the expanding black hole while under fire from the opposing alien forces. A set checkpoint will have to be reached in order to complete the level. The level is either completed when all of the player's units either reach the check point or destroyed. Victory will be determined based on a unit's lost counter, if this counter has not reached its max; the player has successfully cleared the level.

Time:

 Average Completion time: 8 minutes

 Travel Time: 4 Minutes

 Battle Time: 2 Minutes

Map:

Name/ID:
 Alien Home World

Goal:
 Destroy the alien mother ship and end the invasion.

Time:
 Average Completion time: 15 minutes

 Travel Time: 2 Minutes

 Battle Time: 11 Minutes

Map:

Environmental Objects

Name/ID:

 Planets

Attributes:

 Size

 Capture Bonus

 Currency Multiplier

Behaviors:

 Size: (1-3)x(1-3)x(1-3)

 Capture Bonus: (50 * Size)

 Currency Multiplier: 1.5 if the first captured, +1.0 for each addtional

Interactions:
 The planet can be used for cover from enemy ships and can not be shot through or collided with. The only weapon capable of destroying a planet is the Ion Beam, which will completely remove the planet and put 1-15 asteroids in its place dependant on size.

 All planets can be captured for a one time bonus of currency and a multipler at the end of the scenario. The bonus goes to the first side that captures the planet and the multiplier, if previouslly captured, is lost until the player recaptures the planet.

Name/ID:

 Stars

Attributes:

 Size

 Damage

 Damage Radius

 Capture Bonus

 Currency Multiplier

Behaviors:

 Size: (1x3)x(1x3)x(1x3)

 Damage: 45 + (10 * Size), Any ship smaller then a Battleship is instantly destroyed.

 Damage Radius: 1, Damage is only done to adjancent ships.

 Capture Bonus: 25 + (50 * Size)

 Currency Multiplier: 1.5 if the first captured, +1.0 for each addtional

Interactions:

 Stars can be used for cover from opposing ships. The star can not be shot through, however, when a unit collides with a star it will be instantenouslly destroyed. The only weapon capable of destroying a star is the Black Out weapon. When destroyed the star has a chance of becoming a black hole, otherwise the star just diffuses and fizzles out.

 Stars act the same as planets when captured and follow the same rules. However, only Battleships and Starcruisers are able to capture stars due to the damaging effect.
Name/ID:

 Wormholes

Attributes:

 Size

 Random Exit

Behaviors:

 Size: 1x1

 Random Exit: Anywhere on the grid that is not allready used by another object

Interactions:

 Wormholes can be collided with by any ship when placed on a grid. The wormhole will take the unit and randomly move the ship to a new location within the grid. The unit can be moved to any level and any location on the grid that is not allready taken by an uncollidable object.

Name/ID:

 Asteroids

Attributes:

 Size

Behaviors:

 Size: Maximum size of 1x1

Interactions:

 Asteroids are smaller objects that occupy any space within the level. The asteroid itself does not take a space on its own and can be collided with by ships. The asteroid then does damage depending on the size of the ship, however, the scout is the only ship that can move through the asteroids and recieve no damage. All asteroids are destructable by any ship.

Name/ID:

 Black Holes

Attributes:

 Size

 Rate of expantion

 Pull

Behaviours:

 Size: the size of a black hole in grid space based on the size of a star, and can be no larger then 12 grid units from its center.

 Rate of expantion: the black hole can expand from its initial size by 1 grid unit per round.

 Pull: 2 grid spaces

Interactions:

 The black hole can either be expanding or static. When the black hole is expanding, the radii will grow by 1 unit space per round (an enemy and player turn). The black hole itself pulls all objects towards it center, this includes ships, planets, stars, and asteroids, this exlcludes wormholes. When any object enters the radii of the black hole, the object is sucked into the black hole and destroyed..
Combat System

When a player has an action to take they can either: Attack, Defend, or Skip their turn.

Skip

This action skips the move and action for that unit. If the unit has already moved, then just no action is taken.

Defend

Each ship has a normal defense which is just diverting all power to make a force field surround the ship and prepare for the oncoming attack. The shield acts like extra armor, providing an additional layer of mitigation from an oncoming attack. The mitigation is a set number which is only increased when the armor is increased.

Each ship also has a special defense which has different effects. There are two types of special defenses: the Evasive Maneuvers and the Reflector.

Evasive Maneuvers

Only small class ships can have this defensive ability equipped. When Evasive is used the ship gets a high chance to dodge all attacks and take no damage from the attack. The only real thing wrong with this is that it still has a chance that it won’t work; this is a small margin, but still substantial. So the player has to decide whether or not he or she wants to take that gamble.

Reflector

This is only for the medium class ships. This completely defends from the oncoming attack and also with increased levels, has a chance to reflect at the attacking enemy doing the damage back to them instead of you. The downside is that it takes 3 turns for you to be able to use it again. Also only the laser cannons and the proton torpedoes can be reflected.

Attack

If there is a target in range of the unit then it can attack it. Placement is not a factor, if the ship is not facing the target, then when attacking it will turn and face the target then attack. Each ship has a regular attack which is just using their equipped laser cannon. The laser cannons’ damage increases with upgrades. They also have special attacks which is particular to each ship class: the proton torpedo, ion beams, mines, bombs, tractor beam, stasis field and each ship can self destruct. Each special attack’s damage increases with upgrades in attack power and depending on the weapon it increases in splash damage.

When an attack is shot it has a chance to hit depending on an evasion chance each ship has. If it hits then damage is calculated by taking the oncoming damage in total, and subtracting the mitigation due to armor and/or shields, and the remaining damage is then done to the ship.

Upgrade System

Before the upgrade system can be explored, the concept of an expansion slot must be explained. An expansion slot is large enough to contain one of the smallest weapons possible. The control for these slots in terms of size is a Light Laser battery. It will always take one expansion slot. When installed, the ship has access to the offensive capabilities that the Light Laser affords and any subsequent upgrades (up to Level 3).

Each weapon will have a slot requirement. A weapon or defensive capability is a discrete purchasable unit that can then be installed into a ship the player currently possesses. Accordingly, a ship must have at least that many free slots in order to equip and use that weapon.

Additional restrictions may apply based on the weapon. For example, the Ion Cannon is a massive laser charge capable of destroying planets. It wouldn’t make much sense to allow a Scout, the smallest ship possible, to have access to a weapon of that magnitude. It would be like adding 6 subwoofers and a component speaker system to a tiny car without additional amplification: it’d blow out the alternator almost immediately.

There would be room for slight upgrades, however. Let’s go through an example. We start the game at 0 out of 10 points for our army. We buy one Scout at a cost of 1 point so, after purchase, we sit at 1/10. Selecting the Scout, we see that it has 4 expansion slots we can outfit with offensive and defensive capabilities. Using cash on hand, we by a Light Laser battery and install it onto our Scout. The Scout can now fire at opposing enemies using this battery.

After a few missions, we have enough cash to upgrade its Light Laser Battery to Level 3, the final upgrade level. At this point, provided we have the expansion slots free, we have the option to upgrade our Light Laser Battery: Level 3 to Medium Laser Battery: Level 1. Using the alternator analogy above, an additional restriction comes into play. The Scout will be unable to level the Medium Laser Battery beyond Level 2 due to “power requirements”.

This same system will apply to defensive capabilities such as the Evasive Maneuvers engine. It would take up one slot and, when installed, increase the chance of the ship to dodge incoming weapon fire by an additional 25%.

Upgrades:

Whenever a weapon upgrades, it does so in two areas: damage and range/radius. All beam weapons will visually increase their beam width when upgraded. Explosive weapons will see a visual increase in their blast radius as well as a more compelling explosion at higher levels.

Whenever ability with an offensive capability, such as the Stasis Field, gets upgraded, it does so in two areas: duration of effect and size of target able to be affected. No additional visual effects will be necessary to convey this.

Whenever a defensive ability gets upgraded, it does so in the area for the benefit it provides. For example, with Evasive Maneuvers, going from Level 1 to Level 2 could increase the chance to dodge from an additional 25% to an additional 30%. A change in color of thrust the engines provide or the color of the shields will be the visual indicator used to convey an upgrade in a defensive ability.

Adding, Selling, and Upgrading a Ship
Between battlegrounds, the player has the option to enter Nova Hangar. It is here that new ships are added to the existing fleet, current ones are released to make room for others, and equipped weapon systems are upgraded and/or changed out. Upon entering the hangar, the player is presented with four options: Add a New Ship, Remove a Ship, Upgrade a Ship, and Exit. On this screen, the top 2/3 is filled with the player’s current fleet. Centered at the top is the name given to the fleet by the player and the total points used out of the total points possible.

Add a New Ship:

The bottom 1/3 displays each of the 5 ships with their point cost enumerated above them. The player is free to cycle through the ships and add to his/her fleet until the point cap is reached.

Remove a Ship:

The player is given a targeting reticule to select a ship. If a ship is selected, a larger image of the ship takes up the screen and a dialog box appears that says “You will sell X ship, freeing up Y points and adding Z credits to your balance. Do you wish to continue?” The box will have a “Confirm” and “Cancel” option. X is the name of the ship selected. Y is how many points that ship costs. Z is half the monetary value of all upgrades and weapon systems scrapped beyond what the ship comes with. For example, if a ship has an Ion Cannon installed, they will be refunded 500 credits since the initial cost of the cannon was 1000 credits.

Upgrade a Ship:

The player is given a targeting reticule to select a ship. If a ship is selected, a larger image to the ship takes up the screen. Below each ship is a visual representation of their expansion slots and icons for the weapon/defense system if the slot is occupied. Selecting a ship brings up a dialog box with the options of “Buy”, “Sell”, “Upgrade”, and “Cancel”.

Selecting Buy brings up a list of all possible weapons and defensive systems the selected ship can equip. Selecting a weapon installs it automatically onto the ship unless slots are unavailable or the player doesn’t have enough credits.

Selecting Sell allows the player to cycle through occupied expansion slots, select a weapon/defensive system and sell it for 75% of its purchase price.

Selecting Upgrade allows the player to cycle through occupied expansion slots. Selecting a weapon/defensive system brings up a dialog box that says “Upgrade to Level X for Y credits?” with the options “Confirm” and “Cancel”. X is the current weapon level + 1. Y is the cost to upgrade to the next level. Although level 3 is the max any weapon or defensive system can reach, certain ships can install certain weapon systems when criteria are met. For example, if a Scout upgrades a Light Laser Battery to Level 3, for an additional cost the player can install Medium Laser Batter Level 1 in place of the Level 3 Light Laser.

Determining Starting Ship Stats (Equipment, Attack Power etc…)

We used a point system to determine how a ship starts off and how it grows from that base stat. Each ship starts off with an attack power point total.

Scout: 50

Fighter: 150

Gunship; 250

Battleship: 350

Starcruiser: 450

Then after that we give the ship starting equipment that equals that attack point total. So for example a light laser cannon does 50 points of damage, so that is the only equipment that the Scout starts off with, and the heavy laser cannon does 150 points of damage, so the Starcruiser can start off with 3 heavy laser cannons, or any combination that equals 450. We used these values for determining attack points for weapons at their basic levels: (Not all weapons deal actual damage, but the values given are attack point equivalents)

Light Laser Cannon: 50

Medium Laser Cannon: 100

Heavy Laser Cannon: 150

Ion Beam: 300

Proton Torpedo: 150

Mines: 150

Bombs: 150

Tractor Beam: 150

Stasis Field: 150

Blackout: 300

Reflector: 200

The Ion Beam, Blackout, and Reflectors are special cases, since they have special effects. Usually the special attacks have a value of 150, but these are doubled because of their capabilities. But each of them comes with a drawback of a cool-down/charge-up time of 3 turns.

So we create a combination of equipment that equals the point value for that ship, and then that is what they start off with when you buy ships from scratch. Now each ship has equipment slots that they can use to equip more weapons or defensive and offensive upgrades. So their attack power total can be increased but those previous stats are just what each ship starts off with, so when you buy a ship brand new that’s what you get.

Game Logic, Algorithms, and Rules

Interaction Component Matrix

	
	Level Explosion(caused by either the Ion Beam or Blackout)
	Supernova
	Planetary Explosion

	
	
	
	

	Ships
	
	
	

	Scout
	
	Instant Kill
	Instant Kill

	Fighter
	
	Instant Kill
	Instant Kill

	Gunship
	
	Instant Kill
	Instant Kill

	Battleship
	
	Instant Kill
	Instant Kill

	Crusier
	
	Instant Kill
	Instant Kill

	
	Light Armor
	Medium Armor
	Heavy Armor

	Level 1
	25pts mitigation
	50pts mitigation
	75pts mitigation

	Level 2
	30pts mitigation
	55pts mitigation
	80pts mitigation

	Level 3
	35pts mitigation
	60pts mitigation
	85pts mitigation

	
	
	
	

	Scout
	Light Armor
	1/4 evasion
	

	Fighter
	Light Armor
	1/5 evasion
	

	Gunship
	Medium
	3/20 evasion
	

	Battleship
	Medium-Heavy
	1/10 evasion
	

	Crusier
	Heavy
	1/20 evasion
	

	
	
	
	

	
	
	
	

	
	Level 1
	Level 2
	Level 3

	Light Laser Cannon
	50
	60
	70

	Medium Laser Cannon
	100
	110
	120

	Heavy Laser Cannon
	150
	160
	170

	Proton Torpedo
	150
	160
	170

	Bombs
	150 initial damage, 50 splash damage*
	160 initial damage, 60 splash damage*
	170 initial damage, 70 splash damage*

	Mines
	150
	160
	170

	Ion Beam
	300
	350
	400

	Tractor Beam
	150
	175
	200

	Stasis Field
	150
	175
	200

	Blackout
	doesn’t have an attack power, can only be used on a star if it’s in range.(Including different planes)
	
	

	
	
	
	

	*Splash Damage
	Any adjacent grid spaces to the one the weapon affected are affected as well. This does not affect the other layers.
	
	

	
	
	Ship Sizes (to dodge against)
	

	
	Small
	Medium
	Large

	Specials
	
	
	

	Offensive
	
	
	

	Mine Detector
	Mines become visible within a range; range increases with upgrades
	Mines become visible within a range; range increases with upgrades
	Mines become visible within a range; range increases with upgrades

	Self Destruct
	Does a proportionate amount of damage calculated by the HP left and the Max HP**
	Does a proportionate amount of damage calculated by the HP left and the Max HP**
	Does a proportionate amount of damage calculated by the HP left and the Max HP**

	Defensive
	
	
	

	Evasive Maneuvers
	
	
	

	Small ships
	 adds 3/20 to evasion +1/20 with each upgrade level(up to 3 levels)
	 adds 3/20 to evasion +1/20 with each upgrade level(up to 3 levels)
	 adds 3/20 to evasion +1/20 with each upgrade level(up to 3 levels)

	Medium ships
	 adds 1/10 to evasion +1/20 with each upgrade level(up to 3 levels)
	 adds 1/10 to evasion +1/20 with each upgrade level(up to 3 levels)
	 adds 1/10 to evasion +1/20 with each upgrade level(up to 3 levels)

	Large ships
	 adds 1/20 to evasion +1/20 with each upgrade level(up to 3 levels)
	 adds 1/20 to evasion +1/20 with each upgrade level(up to 3 levels)
	 adds 1/20 to evasion +1/20 with each upgrade level(up to 3 levels)

	Shields
	30pts of damage stopped + 10pts for each level of armor
	50pts of damage stopped + 10pts for each level of armor
	70pts of damage stopped + 10pts for each level of armor

	Reflectors
	n/a
	Take no damage, also has a 1/5 chance to reflect back at the enemy. +3/20 for each level. 3 turn cooldown
	n/a

	
	
	
	

	**Proportion
	Current HP * Size Modifier
	
	

	Size Modifier
	Small --- 1.5
	Medium --- 2.0
	Large --- 2.5

	
	
	
	Level Obstacles
	
	

	
	Planets
	Stars
	Asteroids
	Black Hole
	Wormholes

	Ships and Weapons
	
	
	
	
	

	Ships
	Attempt to capture the planet if there is no one there already.
	Only the Battleship (if it has heavy armor equipped) or the Crusier can attempt to capture stars.
	If any ship other than the Scout occupies the same space as the asteroid it takes damage. The Scout dodges the asteroid.
	If sucked into the Event Horizon* of the Black Hole, then, Instant Destruction
	When a ship enters a wormhole it comes out the other end, the placing differs each time.

	Light Laser Cannon
	hits the planet but does nothing
	does nothing
	Does 1/4 damage to the asteroid
	Sucks it up (nullifying the attack)
	n/a

	Medium Laser Cannon
	hits the planet but does nothing
	does nothing
	Does 1/2 damage to the asteroid
	Sucks it up (nullifying the attack)
	n/a

	Heavy Laser Cannon
	hits the planet but does nothing
	does nothing
	Destroys the asteroid
	Sucks it up (nullifying the attack)
	n/a

	Proton Torpedo
	hits the planet but does nothing
	does nothing
	Destroys the asteroid
	Sucks it up (nullifying the attack)
	n/a

	Bombs
	hits the planet but does nothing
	does nothing
	Destroys the asteroid and any surrounding ones in the splash damage**
	Sucks it up (nullifying the attack)
	n/a

	Mines
	n/a
	n/a
	n/a
	Pulls in the asteroid with the conditions of a light class ship.
	n/a

	Ion Beam
	Destroys that planet with one hit
	does nothing
	Destroys any asteroid the beam comes in contact with.
	Sucks it up (nullifying the attack)
	n/a

	Tractor Beam
	n/a
	n/a
	Pulls in the asteroid 1 space
	n/a
	n/a

	Stasis Field
	n/a
	n/a
	n/a
	n/a
	n/a

	Blackout
	n/a
	destroys the star with a 1/2 chance to become a supernova or a black hole
	n/a
	n/a
	n/a

	*Event Horizon
	The edge of the visible radius of the black hole

	**Splash Damage
	Any adjacent grid spaces to the one the weapon affected are affected as well. This does not affect the other layers.

	
	
	Armor Types
	

	
	Light Armor
	Medium Armor
	Heavy Armor

	Special Weapons
	
	
	

	Tractor Beam
	3 Spaces +1 space for each level
	2 Spaces +1 space for each level
	1 Spaces +1 space for each level

	Stasis Field
	Frozen for 1 turn; +1 turn for each level, cooldown: 2 turns, +1 turn for each level
	Frozen for 1 turn; +1 turn for each level, cooldown: 2 turns, +1 turn for each level
	Frozen for 1 turn; +1 turn for each level, cooldown: 2 turns, +1 turn for each level

Key Game Algorithms

Accuracy Determination
To determine whether or not an attack hits an enemy, each ship is given an Evasion stat that varies with each ship. This stat is a percentage that determines the chance to dodge an attack. This percentage is larger for smaller ships, and smaller for bigger ships. The special defense Evasive Maneuvers increases Evasion for the ship for that turn.

Determining End-of-Level Stats

At the end of each level, the player is awarded credits for the type of ship that they destroy:

Drone: 100 credits

Plasma Jet: 200 credits

Screamer: 300 credits

Supernova: 400 credits

Scryer: 500 credits

Mother Ship: 600 credits

Each planet has a set value that you get from capturing a planet or star for the first time. Then at the end of the level that amount you got is added to the amount of credits gained from destroying ships. Then the number of stars and planets is multiplied by your total currency gained. If a player gets through a level that has a black hole with losing any of their units to the black hole then 2 is added to the multiplier.

Each planet has a set currency value:

Small planet: 50 credits

Medium planet: 100 credits

Large planet: 150 credits

Small star: 75 credits

Medium star: 125 credits

Large star: 175 credits

Surviving a black hole = 2x multiplier to the total currency value

Capturing a planet/star = 1.5x multiplier to the total currency value

Capturing 2 planets/star = 2x multiplier to the total currency value

Capturing 3 planets/star = 3x multiplier to the total currency value

Etc….

Combat Resolution
When a unit attacks another unit, it turns its guns to the enemy and fires the selected weapon at the enemy. Then depending on the evasion chance of the defending ship, then the shot will hit or miss. (This goes for the stasis field and tractor beam as well) If it misses then it won’t hit the enemy, and the attacking unit either has to move, or end his or her turn. If it hits, then damage is calculated by taking the total amount of the incoming attack, and subtracting the defending unit’s armor mitigation, and if that unit has its shield up then that mitigation is subtracted from the attack power as well. If the shield is a reflector, then the attack will bounce off the shield, and based on its reflection chance it will both bounce off of the reflector and hit nothing or it will bounce back and hit the attacker for double the damage, and then the damage dealt is calculated the exact same way. In this case the attacker will not be able to put up any shield defenses.

So the equation is: (Total Attack Damage – Defending Armor mitigation) – Shield Armor mitigation = Total Damage Dealt

For example if a Starcruiser has 2 heavy laser cannons equipped with an attack power of 150 and 200 fires at a gunship with its basic attack then the total amount of incoming damage would be 350 total damage. If it fires with the Ion Cannon with an attack power of 400 then the total incoming attack damage would be 400.
Determining the Size of a Black Hole

If a star is destroyed and it becomes the black hole, the radius of the black hole is 1.5 to 2 times the size of the star.

Taking Damage While Capturing a Star
Every turn that the ship is in the process of capturing a small star then the ship loses 55 HP each turn; 65 for a medium star, and 75 for a small star.
Determining Amount of Move Spaces

To determine how far a unit can move on either plane, the moving range is taken into account for each unit. When a unit is selected, highlighted radius of hex points show the available places that the unit can move on that active plane. By the press of a button, the player can move the active plane to show the available places of movement, by a highlighted radius of hex points. For moving up or down to a different plane, it costs 1 movement space. So if a scout with a movement radius of 8 tries to move to a plane above it, then the radius shown would be a radius of 7, and if it tried to move up or down two planes, then the radius shown would be a radius of 6.

FAQ

What am I doing in this game? How do I beat the game?

You are to build yourself a fleet, and use it to complete the objectives given to you in the game. During your turn you move your units, and try and position them to either attack your enemies, or capture stars and planets. You beat the game by completing all of the primary objectives, and defeating the final boss, the Mother Ship.

Can I save my game in the middle of a fight?

Yes you can. By choosing the resign option on the menu on the Heads up Display, you can save the game right where you are and when you go back into the game, you have the option to load from where you were in the game.

How do I attack the enemy?

When you move near an enemy, and you select attack, a set of highlighted hexes will show where your ship can attack. Then you choose your weapon, and then if an enemy ship is on any of the highlighted hexes, then you can select them and attack them with the selected weapon.

How do I equip new weapons?

When you go to the shop, you have the option to buy upgrades. When you select the ship that you want to upgrade, then the available equipment slots will show, and then you select the upgrade, and set it into the slot. When you do that, the selected ship will have that upgrade equipped and you will be able to use it. (Refer to the Building a Fleet section of the doc for more info)
What is stopping me from using one unit to overpower everything else?

Each unit has its unique strengths and weaknesses. Such as the gunship for example, while it has a good amount of firepower and defense, and while it has the reflector, the reflector has a long cool down time, so it can’t be used too rapidly and it is still vulnerable to bombs, mines, tractor beams, and stasis fields. Also the reflector is the only special weapon that the gunship has, so a good amount of firepower and skill can take the gunship down.

What is the global point total, and what does it represent?

The global point total is the total number of points you can spend to buy more ships for your fleet. They represent the resources and raw materials that it takes to make those ships, but it’s simplified into a point system that makes it easier to relate to. Each ship has a point value, Scout: 1, Fighter: 3, Gunship: 5, Battleship: 7, Cruiser: 9. So if you have 10 points to spend you have to buy a ship or a combination of ships that total less than or equal to 10.

How do I move between planes?

When you move a unit, highlighted hex points that show where you can move on the highlighted plane, then with a button press you can switch active planes, and then highlighted hex points will show where you can move on that plane. Switching planes will cost some movement distance, and that will be taken into account with the highlighted hexes.

How do I get more units?

At the beginning and the end of each level, you are taken to a shop where you are able to buy or sell more units to add or remove from your fleet. You buy ships using your resource points, not the currency. Be aware that you have a point cap that limits how many units you can have at a time. This shop can also be accessed at the over world map as well.

How do I get credits/currency?

When you destroy an enemy ship, you get currency for that ship. Each ship type gets you different amounts of currency. If you captured and held any planets or stars for the entire level, or if there is a level with a black hole and all of your ships do not get sucked in then you gain a multiplier for the amount of stars/planets you captured, and a 2x bonus for surviving the black hole. Also at the shop, if you bought any upgrades on any of your units if you sell that unit, then the currency that you spent you get 50% of the monetary value of all upgrades on that ship. Or you can select each upgrade on that unit and sell a specific upgrade and gain back 75% of what you paid for it.

How do I upgrade?

When you go to or are taken to the shop, you have the chance to use your currency to buy upgrades for each unit that you have in your fleet. Any upgrades that you buy go directly into an available equipment slot, if there is not one available.

Can I save the game?

Yes there are two ways to save the game. One is an auto save feature that saves each level that you have passed, and how much of your point total that you have amassed. So if you beat a level and have your point total increased from 10 to 15. Also in the middle of a battle, you have the option to save your place in the battle so that if you exit the game and then restart then you can come back to the exact place that you left off at.

How do I select a target?
When you choose attack on a unit, a set of highlighted hex points show the attack range of that unit, and if a unit is in range then you can click on the target that you want to hit, and then the unit will attack with the selected weapon.

How do I capture planets or stars?

When you move next to a planet or a star, the action to capture will become available, and then you can select it, and the ship will dock at that planet, and each turn will capture a part of that planet. The same principle applies for stars as well, but the catch is that only the larger ships can capture stars, due to the harmful atmosphere and even while a large ship is capturing the star it gets harmed.

Small planet/star: 2 turns if not already captured

3 turns if it has already been captured.

For a star -55HP per turn

Medium planet/star: 3 turns if not already captured

4 turns if it has been already captured.

For a star -65HP per turn

Large planet/star: 4 turns if not already captured

5 turns if it has been already captured.

For a star -75HP per turn

How do I increase my point total?

After you complete a level for the first time, you point total will increase by five. If you repeat the level and complete it again, your point total will increase.

What do I do if a stage is too hard for me to complete?

Try going back to levels that you have already completed, to try and capture more planets or stars to try and get more credits to upgrade your current fleet so that you can tackle the next challenge. Or if your combination of ships isn’t working, then sell your ships and try to use another combination of ships and try a different tactic in order to defeat the enemy.

Reference of Key Elements

Scoring

Points will be given to the player in a few different ways, completing the primary objective (eliminate the enemy forces, capture or destroy the target planets or star), completing a secondary objective (capturing a number of planets, surviving black holes), or destroying enemy ships. Completing primary objectives will yield and extra 250 credits on top of any credits gained from destroying ships and completing secondary objectives. Completing a secondary objective will give the player an extra multiplier added on to your overall credits gained from the level. Capturing a planet/star will yield different credit values that are show in the Planet/Star Capture Point Value chart. Capturing a single planet/star will have a 1.5x multiplier, and anything above one planet will be proportionate to the number of planets/stars captured (3 planets/stars captured, player gains a 3x multiplier). Planet and Star multipliers are combined at the end of the level (three Planets and two stars captured would be a 5x multiplier). In order for these multipliers to be applied the player must have the planets/stars captured at the end of the battle. Surviving a black hole will give the player a 2x multiplier. Black hole multipliers will also be applied to any other multipliers gained in the level. To survive a black hole none of the ships in the fleet can be destroyed by the black hole. Destroying different ships yield different point values as shown in the Ship Point Value chart.

Ship Point Value chart:
	Ships:
	Credits per enemy killed:
	Repair cost per death:

	Scout
	100
	50

	Fighter
	200
	100

	Gunship
	300
	150

	Battleship
	400
	200

	Starcruiser
	500
	250

	Mother Ship
	600
	300

Planet/Star Capture Point Value chart:

	Planet/Star Size
	Planet Capture Value*
	Star Capture Value*

	Small
	50
	75

	Medium
	100
	125

	Large
	150
	200

*These values can only be obtained once per planet/star per mission

Winning/Losing

Elimination (Eliminate the enemy):

To complete this objective the player must destroy all enemy ships with their fleet and have at least one ship still alive.

It’s the exact opposite for the player to lose at this objective. The enemy has destroyed the player’s fleet and still has one ship still alive.

Control (Capture target planets):

To complete this objective the player must control all of the target planets, or wipe out the enemy fleet to win. To gain control of a planet the player must be docked at (be one space away from the planet) a target planet for set amount of turns based on the planet’s size (see Planet Capture chart for more details). If a planet is captured by an opponent it will take the number of turns plus one to gain control of that planet. If two ships (one player ship and one computer ship) are docked at the same planet, the two will offset each other so no one will gain control until one group has the majority of ships docked at that planet. While a ship is docked, it is unable to attack or defend. Once a planet has been captured, it is no longer necessary for a ship to remain docked. If a target planet is destroyed, then the number of target planets is reduced to the number of planets left. If there are two target planets left (one captured and one un-captured), the team that has the captured planet wins the battle.

In order to lose this game type, the computer must have control of all target planets, or the player’s fleet has been destroyed. If all planets have been destroyed both sides lose the battle.

Planet Capture chart:

	Planet Size:
	Turns to capture
	Turns to steal capture

	Small
	2
	3

	Medium
	3
	4

	Large
	4
	5

Detonation (Destroy the enemy’s star):

To complete this objective the player must destroy the enemy’s star or eliminate the enemy’s fleet. To destroy the star the player must have Blackout on one of their ships. If the player has no Blackout weapons, then they must adjust their strategy to defend their star while trying to eliminate the enemy fleet.

If the player’s star is destroyed or their fleet is wiped out, the player will fail to complete this objective.

Transitions

Game Saving:

After saving a game, the player has the options to continue battle (if they are in battle), or quit the game.

Game Loading:

At the main menu the player will have the option to load a player profile to return to their saved game. When the player loads in their saved profile, if they are currently engaged in battle the current level state file will be loaded and the player will be put right back into battle where they left off, else they will be brought to the over-world screen to select a battleground.
Rewards

Upon successfully completing a battle, the player’s Remnant Resource Allocations will be increase by 5 points allowing the player to add to their fleet. Other rewards include upgrades where the user uses credits earned to buy new weapons or armor.

Art and Production Design

3D Art & Animation Deliverables

3D models will be provided in the Maya format.
Human Technology

Since the humans have had to start over with limited resources, they began to recycle a lot of their old materials and technology. Consequently, their ships have a worn and weathered appearance. They appear to be cobbled together with metal plating, some noticeably overlapping others. They’ve also had to implement stolen Xar’xix weaponry so their ship designs are crude.

The Remnant fleet has five (5) ships associated with it. From smallest to largest they are: Scout, Fighter, Gunship, Battleship, and the Starcruiser.

Scout – The smallest of the Remnant fleet. The Scout will be a small, one-manned craft with an eccentric wing design. The general shape should convey quick movement and capable of only a couple of attacks.

Fighter – Twice the size of the Scout. The Fighter should also be a small, one-manned craft. Due to the increased offensive power of the Fighter (compared to the Scout), it should have a more aggressive profile than the Scout.

Gunship – Six times the size of the Scout. The Gunship is where the size of the ships ramps up. The model should be plump in appearance, giving the impression it’s carrying a lot of armaments for its size. It should look like the Remnants took large parts from other ships and fused them together, applying other antenna and turrets.

Battleship – Eight times the size of the Scout. The Battleship and the Starcruiser have more deliberate designs associated with them while maintaining the metal plating look. It will consist of a main body and tail section. The body will have a functional but aggressive look to it, giving the impression that several laser turrets can be installed all around it. The tail section will consist of massive fins that form a plus sign when looked at straight on. Connected to the top and bottom fins are additional ship sections. Attached to the side fins are large weapon batteries.

Starcruiser – Ten times the size of the Scout. The largest ship in the fleet is also the most intimidating. It consists of a large body, disc-like in nature.

Xar’xix Technology

Xar’xix architecture is largely based on the stolen tech and aesthetics of their “patron” race, the Shar’din. Their structures and ships are governed by smooth, sweeping curves. A lot of times they appear surrounded by what appears to be fingers of a claw. The surface has the appearance of dark, smoked glass. Their technology is very deliberate and elegant to provide a stark contrast to the primitive design of the Remnants.

The Xar’xix, unlike the humans, have six (6) ships. From smallest to largest they are: Drone, Plasma Jet, Screamer, Supernova, Scryer, and the Mother Ship.

Drone – The smallest of the Xar’xix’s fleet. The Drone is a small, one-manned craft. It should have a claw like attachment on the front of the craft that takes up 1/3 of the entire size. Its lasers will fire from this claw. It should have 3 engines at the rear of the craft that are arranged in a triangle.

Plasma Jet – Twice the size of the Drone. The Plasma Jet is very sleek in appearance. Like the Drone it is a small, one-manned craft. The cockpit is slender, oblong and behind it four large, arcing tentacle-like arms shoot up and out in front of the craft. Behind the craft, two longer, larger tentacle-like arms flow from the cockpit, parallel to the ground. The engine sits right behind the cockpit, between these two arms.

Screamer – Four times the size of the drone. The Screamer has a sleek appearance. It looks like two talons connected by a bridge section. The first one forms the front part of the ship and curves slightly upwards. The second one forms the back half and curves slightly down. These two pieces are connected by a solid structure, which is the bridge. At the end of the top talon (the back of the ship), a ring is attached which forms the basis of its propulsion system.

Supernova – Eight times the size of the drone.

Scryer – Ten times the size of the drone.

Mother Ship – Incomprehensibly large.

Celestial Bodies

Planets – Planet models will be composed of small, medium and large spheres that will contain a skin covering the geometry.

Stars – Stars will have a sphere model core with particle effects over top to give the appearance of plasma and fusion.

Black Holes – The model for a black hole will consist of a simple disc with a skin on top to form this celestial body’s accretion disc. The disc will be rotated about the Y-axis to give the appearance of “churning”.

Wormholes – Wormholes will consist of a simple disc with a skin on top. The disc will be rotated about the Y-axis to give the appearance of “churning”.

Asteroids – Asteroids will have rock-like geometry with 4-5 being created to give the appearance of variety. A skin will be laid on top to provide texture. These will be scaled to provide debris from destroyed planets.

2D Art (HUD/Menu/Particles/Textures) Deliverables

2D Art (Skins, textures, icons, etc.) will be provided in the PNG format.

A bitmapped font will be necessary to generate text for the title screen and in game menus. It should be green and look like a digital alarm clock’s readout.

Particle Effects

Several particle effects will be needed to enhance Supernova Blindside’s visual appeal. These are enumerated below.

Stars – Gold and orange particles will emanate from the star’s surface. They should have the appearance of definite points of light with a dwindling in intensity corona surrounding them.

Black Holes – Particles will be used to generate the jets of light that spray up and down in a column from the center of the black hole’s accretion disc.

Wormholes – Smoky, multi-color particles will be used to signify the formation and disappearance of a wormhole.

General Explosions – There will be three levels of explosions: small medium and large. The medium explosion will be a scaled up version of the small explosion. These will be used to indicate both Remnant and Xar’xix ship destruction. Xar’xix explosion particles will be a different color than Remnant explosion particles.

The larger explosion will be used for star collapse/death. It will be a giant flash of light with a particle shockwave (non-interactive) sent out in all directions.

Weapon Explosions – Bombs will need a custom explosion. Bombs should have one small explosion at the point of impact with several smaller explosions erupting around it. Mines will use the small general explosion to indicate detonation.

Lasers – Lasers will need a focused beam of particles to indicate they’re being fired. They will be generated in three (3) thicknesses to indicate the upgrade from levels 1 to 3. Additionally, they will require recolor to indicate their association Light, Medium and Heavy laser batteries. Six (6) colors will be required for this.

Ion Cannon – A large laser beam, accompanied by particles swirling around it like a coil will be used to indicate the Ion Cannon’s attack.

Textures

Ships – Each ship will need a texture so that depth and character can be expressed in each design. Remnant textures will generally have a haphazardly combined metal plate look while Xar’xix ship textures will be glass-like in appearance. Eleven (11) of these will be needed: one for each ship and a final texture for the Mother Ship.

Planets – Four (4) textures will be needed to give the appearance of variety in planetary objects. They should vary in color and pattern to give each planet a unique look.

Accretion discs – One texture can be created for the accretion discs of black holes and wormholes. A recolor will take place to make the disc of the wormhole visually distinct from the black hole.

Asteroid – A rock-like texture with craters peppering the image will be used to wrap around each asteroid, giving it depth and character.

Skybox – One texture will be needed to provide the background skybox. It should be mostly black with points of light for stars so as not to distract the player from the action on screen. Another texture will be needed for the Nova Hangar screens. It should look like a concrete landing pad that the player’s ships are parked on. It will have lines of paint outlining landing zones and “WARNING” in a couple of spots.

Menus

Images of LCD monitors will be used to contain similar menu items. When a ship is selected during combat, a monitor will appear in the lower left with all the options available to the ship written in the bitmapped font. These monitors will also appear in the Nova Hangar to present the user with the different ships and upgrades available to them (Mockups are found in the Interface section).
Expansion slots

A single graphic for an expansion slot will be needed to so that expansion formations can be made for each ship using this image. They will be chained into rows and columns to represent the slots weapons and defensive maneuvers are installed into. They should have a metallic look to them to indicate they are empty and awaiting machinery to be inserted into them.

Icons

To go along with the expansion slots, icons will be needed to indicate weapons and defensive abilities (items). 3 will be needed for each weapon and defensive measure to indicate which level of upgrade the item is at. The look of the icon will consist of a black border surrounding the entire image. Inside that border will be another border, larger in width. This border will be used to indicate the level of the item. It will be Red for a Level 1 item, Orange for Level 2, and Green for Level 3. The interior of the icon will be a stylized picture, unique to each item. This will allow the player to assess, at a glance, what he has installed on the ship and what level it is.

Sound Effect Deliverables

While the art style is to be a middle ground between realistic and cartoon-ish, the sound effects should fall more on the realistic side. While lasers and star collapsing weapons have no real life counterparts, they do have precedence in popular television science fiction so that will be used as the starting basis. Sound effects will be provided in the WAV format.
Lasers

Lasers should sound like a phaser blast from a starship in Star Trek but with more bass to it, giving it a deadlier feel. When a laser is upgraded in level or weight (Light to Medium), the laser should decrease in tone to sound more menacing.

Mines

Mines should give off a low sounding tuning fork noise akin to the detonation sounds heard in Star Wars Episode II when Jango Fett is chasing Obi-wan through the asteroid field.

Bombs

When bombs connect with their target, they should sound like one large explosion peppered by several smaller explosions to indicate the splash damage. Fire crackers, but more menacing, would be a good comparison.

Ion Cannon

The Ion Cannon should draw inspiration from the devastating laser blast of the large alien ships in Independence Day. It should have a “wind up” noise followed by an explosion and a low bass laser beam blast.

Proton Torpedo

Proton Torpedoes can be a reproduction of the Photon Torpedo noise heard in Star Trek. It is a distinct, succinct noise that accurately represents the firing of an energy projectile.

Blackout

The Blackout weapon, while a projectile like the Proton Torpedo, should have a distinct noise given its cataclysmic effect. The initial firing should sound like a walking Bass string with low action being plucked once. Three seconds later, every sound in the game, including music, is silenced while the weapon collides with a star (the player is unable to fire it at planets or other ships).

Tractor Beam

The Tractor Beam should sound like a conduit of electricity, complete with crackles and pops.

Reflector

The Reflector shield should sound similar to the Priest’s ability Power Word: Shield from World of Warcraft.

Black Hole

A black hole’s ambient noise should sound like churning water, like a whirlpool but not as violent. Its vertical jets should sound like a blow torch ready for cutting.

Star

A star should have a very low volume sound. A fire in a fireplace without the crackles and pops would be appropriate here.

Wormhole

When entering a wormhole, the wormhole noise from Star Trek: Deep Space Nine will play. The noise will also play upon exit.

Music Deliverables

The overall theme of Supernova Blindside’s music can be summed up in one word: ambient. The music of the title page, overworld map, and in game should all be very ambient and flowing. Good references are Metroid Prime and World of Warcraft music. They both have music that while exemplary, blend in with the action and don’t overpower it. It sits in the back of the scene, peaking ears occasionally but adding to the scene instead of distracting from it. Vocal lines will prove distracting, so only instrumental songs will be chosen. The soundscapes should be ethereal and otherworldly. For this reason, arranged music, orchestral or electronic would best fit the game. Influences include BT’s “The Anhtkythera Mechanism”, Hybrid’s “Higher Than A Skyscraper”, “Gravastar”, and DJ Shadow’s “Stem/Long Stem”. Background music will be provided in the MP3 format.
Intro and Title Screen

The music in the Intro should start out fairly subdued and crescendo into dire bombast when the fate of Earth is revealed to the player. It should then segue into hushed and swirling tones when the title screen appears

Overworld

Music similar to the title screen should be present here. Since the player will be looking at what is essentially a star map of the sector they’re fighting for, the music should give an aural perception of “twinkling” and feel heavenly. The end of the song should easily flow into the beginning so that the perception of one long, continuous sedate set of notes will be observed by the player.

In Game

Each stage should have a different theme associated with it. Normal play will have a song that is ambient but more upbeat than the overworld. The introduction of slight percussive beats will occur here, giving the perception that each stage has a heartbeat, a pulse. The music should become much more noticeable and bombastic when a significant event takes place such as the destruction of a planet or the collapse of a star. Two minutes after a significant event, the music should return to normal.

Nova Hangar

The music in Nova Hangar should, like the rest of the music, be ambient. However, it should be more mechanical sounding than the rest of the tracks (due to the fact that this is where the player acquires new ships and upgrades). A more prominent sense of musical theme can be present here since it can serve as an aural distraction from looking through several ships and their potential upgrades.

Cutscenes/Pre-rendered Scene Deliverables

There will be two (2) cutscenes in Supernova Blindside: at the beginning and end of the game. The cutscene at the beginning will be hand-drawn and consist of seven (7) pictures with pre-rendered text at the bottom. The scenes will follow the arrival of the Xar’xix on Earth and its subsequent destruction.

Introduction

Scene 1 – Xar’xix steals from and destroys other worlds.

Scene 2 – Xar’xix agents infiltrate Earth society at all levels.

Scene 3 – Out of love for her husband, one of them defects and warns of the impending star collapse.

Scene 4 – The Ark is built in secret, using the combined resources of world governments.

Scene 5 – Sun collapses and explodes, destroying Earth, as the Ark sails off into space.

Scene 6 – Humanity skips through the galaxy looking for a new home but only finds dead systems.

Scene 7 – Calling themselves the Remnants, the last of the humans take refuge at the doorstep of the Xar’xix sector, preparing for attack.

Win Condition

Scene 1 – Several ships of the human fleet fly away from the exploding Xar’xix Mother Ship.

Scene 2 – Fly past a devastated system on the way home with the text stating “Are we any better?”

Scene 3 – The ships are on the Remnant home planet, landing in the midst of a sunny day.
Tech Overview

The overall purpose of this technical document is to give a starting point for the technical design of our game. This document is comprised of the major modules and features of Supernova Blindside, which are broken down to the point that someone who knows nothing about the game could read and immediately begin work. Our team will use this documentation as a series of guidelines for the overall system. The key sections of this documentation are: Game Feature Breakdown, System Feature Breakdown, and Coding Standards. Anything contained within sub-systems and/or a base class is up to the author of the system module. The one item that must be completely and thoroughly obeyed is the Coding Standard. All other documentation can be reinterpreted over time to meet the needs of the project.

Code should be robust, stable, and easy to understand. Clear and concise commenting, indentation and consistent variable naming help facilitate this idea. A unified coding approach across individuals allows for new additions to a team to quickly grasp what is going on and integrate themselves into the development process. Additionally, the documentation gives the team a starting point as well as a sense of direction. It serves as a set of guidelines to follow should someone lose track of the task at hand or the needs of a module. This document preserves the core concepts of each module so that they might be expounded upon later should the need arise. While the code syntax is stringent, our design should not follow this path, lest we paint ourselves into a corner. However, the groundwork structure must be present before any expansion can be made. While this design skeleton allows the foundation to be built upon, it also provides a default framework should an idea not pan out.

This technical design document will be revised and revisited multiple times throughout the next few months. It is a “living document” that not only can change to fit our needs, but be there as a safety net should we lose our way. It also serves to reign in and focus our ideas should modules become too extravagant and handle too much.

Coding Standards

Naming Standards

Angry Code Monkeys will use naming standards in order to help better organize our code as well as make it easier to work with code written by other people. There will be specific standards for member variables, functions, classes, structures, enums, and comments.

Prefix Convention

· Class names are prefixed with an uppercase ‘C’, example: “CMyClass”.

· Structure names are prefixed with a lowercase ‘t’, example: “tMyStruct”.

· Member variables in classes are prefixed with ‘m_’, example:“m_nMyVariable”

· Any file names are not prefixed with the ‘C’ from class names, example: “MyClass.h” and “MyClass.cpp”.

· Function parameters are prefixed with ‘_’, example “_nMyIntParameter”.

· Hungarian notation will be used with all member variables in classes to be specified later.

· No limit on prefixing.

· sm_ppusMyCrazyVariable

· Priority

· Static

‘s’

· Member variable
‘m_’

· Pointer

‘p’

· Any data type

‘n’, ‘c’, ‘sz’, etc…

Hungarian Prefixes

Member variable
m_ *goes before everything but s for static*

char

c

unsigned char

uc

short

s

usigned short

us

int

n

unsigned int

un

float

f

double

d

string

sz

enum

e

pointers

p

pointer to pointer
pp

class objects

no prefix, ex : m_MyOtherClass

static

s *goes before m_*

Structures

· Naming convention for structures will require Angry Code Monkeys members to prefix structure names with a lowercase ‘t’, example: “tMyStructure”.

· Hungarian notation should not be used in structures. Example: “int MyInt”

· Camel case should be used variables and functions. Example: “CamelCase”

Example Structure layout:

struct tMyStruct

{

int MyStructInt

ComputeIntValue(int _IntSentIn);

};

Classes

· Class declarations are required to be prefixed with the letter ‘C’ (Instantiations of a class are not required to have the prefix ‘C’), example: “CMyClass”.

· Hungarian notation is required for all member variables. Example: “int m_nMyInt”

· Function names should start with an uppercase letter and should be camel cased. Example: “void MyFunction(void)”

· Member function parameters should be prefixed with a ‘_’. Example: “_nIntParameter”

· Member functions taking in void as a parameter should have this specified. Example: “void MyFunction(void)”

· Structures and enums specific to a class should be defined inside the class in a separate “public:” or “private:” section not above the class. Example shown below.

· With templated classes an uppercase ‘T’ should define the templated type. Example shown below.

Example class layout:

// include for parent classes goes on line directly above class definition.

#include “ParentClass.h”

class CClassName : public CParentClass

{

Friend class CFriendClassName;

/* class specific structs and enums */

public:

/* Public Data Members */

protected:

/* Protected Data Members */

private:

/* Private Data Members */

public:

CClassName();

// Accessors here.

// Mutators here.

// Other public functions.

~CClassName();

protected:

/* Protected Functions */

private:

/* Private Functions */

};

// use T for the templated type

template <typename T>

// prefix with a ‘C’

class CMyClass

{

// Declare structures and enums first.

public:

struct tMyStruct

{

T
MemberVariable;

}

private:

// use a lowercase to for the Hungarian prefix here.

T
m_tAnotherVariable;

public:

void AVoidFunction(void);

// prefix with an ‘_’

void ANonVoidFunction(int _myInt);

};

· Member variables should keep tab alignment example shown below.

· Accessors should keep tab alignment, example shown below.

· Mutators should keep tab alignment, example shown below.

· Accessors and Mutators should be inline unless there is checking (if checking) example show below.

· Member initializer list should be used whenever possible example shows below.

· Parent constructor should be the first thing called in the member initializer list. example shown below

Class CMyClass : public CMyBaseClass

{

private:

int

m_nMyInt;

CMyLongClassName

m_MyLongClass;

CMyOtherClassNamed

m_MyOtherClass;

public:

CMyClass() : CMyBaseClass(/*parameters*/), m_nMyInt(0) {}

// Accessors

inline int

GetMyInt()

{ return m_nMyInt; }

inline CMyLongClassName
GetMyLongClass()
{ return m_MyLongClass;}

// Mutators

inline void SetMyInt(int _myInt)

{ m_nMyInt = _myInt; }

inline void SetMyLongClass(CMyLongClassName _m)
{ m_MyLongClass = _m; }

}

Relevant Function Names

· Function names start with an uppercase letter.

· Function names use camel hump notation.

· Function names should be descriptive of what the function does.

int MyFunctionEatsInts(unsigned int _foo)

Macros, Enums and Constants

· Macros are allowed for simple things but be careful, use a lot of ‘()’.

· Macro names should be all caps.

· Global macros should be prefixed with ‘_’.

#define _TORADS(a)
(a*((float)PI/180.0f))

· #define’s should be all uppercase letters

#define PI 3.14159

· Enums should always be named if global.

· Enums names and members should be all uppercase.

· Enums should have ‘_’ for spaces.

· Enums should always define a max for the last member.

enum eMY_ENUM { FIRST = 0, SECOND, THIRD, MAX_MY_ENUM };
Commenting

· Comments are not allowed at the end of a line of code. But it’s fine after a declaration.

· int x; // this is the x value of the vector

· // comment belongs here in code.

· x = 5;

· File Comment

//

//
File:

“ClassName.h”

//
Author:
[KR] Kyle Rothermel

//
Modified:
[AK] Andrew Kryvanis

//

[SM] Sean Murry

//

[AL] Anthony Lundquist

//

[TI] Thomas Impellitteri

//
Created:
[KR] March 04, 2009

//
Purpose:
Defines my class.

//

· Function Comment

//

//
Function:
Constructor

//
Created:
[KR] March 04, 2009

//
Purpose:
Allocates the object.

//
Out:

Nothing.

//
In:

Starting age of the particle.

//
In:

Alpha value of the particle. This depicts

//

 the alpha value of the particle.

//
In:

Life span of the particle.

//

CParticle(int _age, float _alpha, int _span);

Coding Guidelines

· Singleton classes must contain both an Initialize() and Shutdown() functions.

· Do NOT use #pragma once.

· Use const where appropriate.

· Never use const casting.

· Space after ‘,’ in function parameters. Ex: void func(3.04f, 40.4f, 12.0f);

· std::string should always be passed by reference.

Development Environment

Microsoft Visual Studio 2005 Visual C++ Compiler

Compiler

DirectX 9, November 2008 SDK

Input and rendering

FMOD Ex 4.22.07

Sound

Alienbrain Essentials for Programmers 7.5

Source control and work storage

Bugzilla 3.2.2

Bug tracking

Visual Leak Detector (VLD) 1.9D

Memory leak detector

Lua 5.1

Scripting

Maya 2008

3D modeling

Adobe Photoshop CS2

Texture assets

Microsoft Office Project 2003

Gantt chart

Microsoft Office Visio 2003

Flowcharts and diagrams

Microsoft Office Word 2003

Documentation

Microsoft Office Excel 2003

Spreadsheets

Timing Specifications

1. Rendering – 20%

2. AI – 5%

a. Decision Tree – 1%

b. Pathfinding 4%

3. Combat – 10%

4. Collisions – 20%

a. Tile Based – 15%

b. Picking - 5%

5. Input – 5%

6. Updating Objects - 10%

7. Sound – 5%

8. Camera – 2%

9. Menus – 3%

10. Effects – 20%

a. Rendering – 15%

b. Updating 5%

System Architecture

The main purpose of the system is to allow multiple objects and effects to be used through a single interface. Since the game is simply a 2D grid in a 3D environment, having all objects interact in the same interface will reduce the complexity for each object. The other systems such as Effects and AI, will all be controlled through another system called the Event system. All Effects are activated by receiving a specific event, this then parses the event down further and sends it to the particle and sound systems. This will have visual/audio feedback be controlled by another system instead of having all the information internally since these effects are controlled by the combat system.

Relationships

Game Module

Sound Manager

Calls Functionality and Passes Data One Way

The Sound manager will also receive information from the Game Module just for information from which background or ambient music to play for the scene. This can also be done from the menu system which is contained in the Game Module.

Combat System

Passes Data/Messages Both Ways

The Game Module will need to receive information on where the player is currently in the game. Data will be received when a player completes a scenario. The information received will be: currency, stages complete, wins, and losses.

Combat System

AI

Calls Functionality and Passes Data/Messages Both Ways

Combat and AI will be heavily linked for data. The AI needs to run on the current location of the player units and the board itself. Therefore, a lot of data will be passed to the AI. Once the AI has all this information, it will then run its own algorithms to send data back to the Combat system on how the AI is reacting. Mostly by sending the Combat system which units it is attacking and what weapon it is using against the target.

Event

Passes Data/Messages Both Ways

The Combat System will talk to the Event system in one of two ways. The first being for AI implementation. Depending on the state of the board, the Combat system will suggest that the 'Flee' event will be sent to the Event system to be sent to the AI system. This will help directly into the AI's decision trees by giving the AI system a greater heuristic values for some tiles.

The second type of communication will be for triggering effects or particle systems. When certain actions occur the right event needs to be played, and since there is no animation system for playing events, the effects will have to be triggered through events. This will also end up calling functionality of the Event system to send the event to another system.

Game Module

Passes Data/Messages Both Ways

Combat will send information about the player to the Game Module. This includes all currency, units lost, enemies remaining, and damage taken. This will be mostly for HUD information about how the player is doing in a combat scenario. As well as information on where the player is standing throughout the game itself.

Object Manager

Calls Functionality and Passes Data/Messages Both Ways

All the data that will be sent to the object manager will be information on ships and where they are currently standing. This will go as current HP, weapons available and other information needed by a ship or environmental object.

Grid

Calls Functionality and Passes Data/Messages One Way

The grid will have set functions to produce information for the combat system. This entails all combat collision, or tile-based collision, on where objects are colliding and are they visible to other players.

AI

Event

 Passes Data/Messages Both Ways

As stated before the Combat system will be able to suggest certain events to the Event system. These in turns will be sent to the AI for the decision tree which derives the path finding.

Grid

 Calls Functionality and Passes Data/Messages Both Ways

This will work in nearly the same format that the object manager performs with the grid. For producing all possible tiles to hit and move to, and how to interpret those moves into a strategic move.

Combat System

 Calls Functionality and Passes Data/Messages Both Ways

The AI will need to talk back and forth to the combat system in order to see how it’s currently doing in its own campaign operations. This will give the AI a heuristic cost to all its movements and an additional effect to the event system.

Object Manager

 Sends Data One Way

After the AI has completed all its algorithms and is ready to move its units, it will send all this information over to the Object Manager to update the units. This information includes: destination, target, and which weapon is to be used.

Event

Effects

Sends Data One Way

Instead of having effects happen at the end of animations, our events will have to be triggered from the event system. These effects will be triggered by the Event system when the Event system receives a trigger event from the Combat system.

AI

 Passes Data/Messages Both Ways

The Event system will work by sending one of five possible events to the AI system. The AI will take this information and run it through its own algorithms and then return it back to the Event system. The Event system will then take this return value into account for its next possible action.

Combat System

 Passes Data/Messages Both Ways

After resolving combat between two units the Effects system will need to know where and how to play the proper effect. This will be handled by the Events by packaging all the information for the Effects, such as: location, destination, direction, and speed.

Camera System

 Sends Data One Way

In order to have the camera focus on a set location, the Event system will also send information to the camera based on the location of the effect. Such as a star turning into a black hole . The camera will receive information on the location of the effect and lock onto that position for the duration of the effect.

Effects

Sound Manager

Calls Functionality and Passes Data/Messages One Way

The Sound Manager will receive information on what to play based the effect that is playing. Therefore, the Effects system will have a one to one relationship when stored in the proper buffers. Based on the Event received in the Effects system, the Sound Manager will also receive the event and play the proper sound effect.

Render Engine

Calls Functionality One Way

Once Effects are ready to be played all that’s needs to be done afterwards is rendering. Therefore, whenever an effect is triggered, it will need to access the Render Engine system to present itself on screen.

Particle Engine

Sends Data One Way

The Effect system completely controls the Particle Engine. The Particle Engine will not be running at all until it receives information to play from the Effects system. The Effects system will pass the Particle Engine information on which particle effect to play, the location of the effect, and the duration of the effect.

Particle Engine

Render Engine

Calls Functionality One Way

Calls the Render Engine so that the particles may be drawn on screen.

Object Manager

Render Engine

Calls Functionality One Way

All objects will be stored within the object manager, such as: ships, planets, stars, black holes, etc. All these objects will also have their own render function, so they will be using the Render Engine's mechanics to render themselves to the screen.

Grid

Calls Functionality and Passes Data/Messages Both Ways

The grid through its own functionality will produce all movement ranges and target ranges for each ship whenever a ship object moves. Therefore, the object manager will need to keep in contact with the grid to information the grid when an object has changed its location and its movement field needs to be updated.

Event

Sends Data One Way

Object manager will need to pass information to the Event system so that the Effect system will have a position to where the effect will be played.

Combat System

Calls Functionality and Passes Data/Messages Both Ways

The object manager will send over information on which two ships are fighting and what weapon is being used. The combat system will then return the information back to the object manager to update the ships health and weapons status.

Shop System

Access to a Global System

The player will have to option to buy and sell ships to the Shop system. The Shop system itself is a part of the Menu system, and in-turn a global system. By directly accessing the Shop system the Object Manager will be able to remove or add ships into its own data banks.

Upgrade System

Access to a Global System

The Upgrade system will nearly interact with the Object Manager in the same way the Shop system does. However, the Upgrade system will be able to improve or remove upgrades from the ships currently in the object manager instead of buying or selling ships.
Shop System

Upgrade System

Calls Functionality Both Ways

The Shop system contains the Upgrade system and calls its startups when a user wishes to switch to the Upgrade System. This is a one way transition, as such the Shop system must be visited before accessing the Upgrade system.

Object Manager

Calls Functionality and Passes Data/Messages One Way

The Shop system will pass information to the Object Manager through its own functionality on which ship to add or remove to its fleet.

Upgrade System

Shop System

Calls Functionality Both Ways

The Upgrade system will have no way to return directly to the Overworld Menu. Thus, the user will have to go back into the Shop system before they can return to the game. To do this the Upgrade system will have to call the functionality of the Shop system to make it the active layer of the Menu system.

Object Manager

Calls Functionality and Passes Data/Messages One Way

The Upgrade system will be able to pass information to the Object Manager about which upgrade is to be attached to which ship. To do this, the functionality of the objects within the Object Manager will need to be called to make sure the upgrade is acceptable.

Camera System

Render Engine

Sends Data One Way

The camera doesn't need to touch rendering at all. The renderer itself will figure out what needs to be culled out of the screen. Therefore, the Camera System will only need to send its matrix over to the Render Engine to figure out what and what isn't on the screen.

Grid

Calls Functionality One Way

The camera will be able to call the functionality of the grid to locate which tile to lock onto should the camera not be locked on the center. This will be used to target objects on the grid rather than grid tiles themselves.

Render Engine

Game Module

Access to a Global System

The basics of a game in general. The rendering system will interact completely with the game system, presenting the user with all of the necessary information within the Game Module. The Render Engine will be responsible for all Culling with the information from the Camera system, as well as for rendering all objects within the Object Manager and Effects system. This will give all visual user feedback under the DirectX 9 API.

Grid

AI

Calls Functionality and Passes Data/Messages Both Ways

The Grid and AI will speak to each other in the form of sending and receiving tiles for movement range and firing range. This will give the AI all proper movement tiles for path finding.

Object Manager

Calls Functionality and Passes Data/Messages Both Ways

The Grid will speak with the Object Manager in maintain all the units positions on which plane and grid space the unit is on. This will also update the Grid information about which spaces are occupied.

System Feature Breakdown

Game Module (singleton, global)

The main Game system. This will run all necessary code along with managing the menu system. The menu will be run off a stack based system and the stack will be stored within the Game Module. This will control all push and pops for the states as well as cleaning up their dynamic memory.

	Return
	Name
	Parameters
	Description

	void
	StartUp
	void
	Instantiate all basic data members, such as the Grid, DirectX systems, Menu systems, etc.

	void
	Run
	void
	The main game loop, running all components of the game.

	void
	ShutDown
	void
	Clean up any dynamic memory.

Time to Complete

Total: 1 Day

· Implementation - 1 Day

Module Author(s)

Keith Roiser

Render Engine (singleton)

This module is responsible for all rendering and culling. The Render engine will receive all the objects it will draw from the Object Manager and the Effects System. All culling will be done internally by the Render Engine when it receives the Camera's matrix from the Camera system.

Dependencies

Accessed by the following:

· Effects Manager

· Object Manager

· Camera System

· Particle Engine

	Return
	Name
	Parameters
	Description

	void
	StartUp
	void
	Instantiate all DirectX systems.

	void
	Render
	void
	The main render function, rendering all objects within its lists: object list, effect list, particle list, etc.

	void
	Update
	void
	Updates all the objects that need to be updated. Particles and effects are the only objects that fall under this scope due to ships and environmental objects not moving.

	void
	ShutDown
	void
	Clean up any dynamic memory and releases the DirectX systems.

	void
	GetCamera
	Mat4 CameraMat
	Gets the current camera's matrix for culling all objects.

Features

•
Allows for all objects to be rendered on screen.

Time to Complete Estimate

Total Time: 10 days

Research – 1 day

Maya Exporter – 1 day

Load Models – 1 day

Particles – 1 day

Rendering 2D Images – 2 days

Frustum Culling – 2 days

Module Author(s)

Keith Roiser

Input System (global, singleton)

The Input system will be responsible for all forms of input. This includes: mouse and keyboard, controller, and the arcade machine. This will only be usable in the combat and menu systems and will all be buffered input aside from the joysticks on the controller and arcade machine.

	Return
	Name
	Parameters
	Description

	DirectInput*
	GetInstance
	void
	Returns the instance of the DirectInput class

	bool
	Init
	HWND _window, HINSTANCE _instance, bool _bExclusive
	Initialize the keyboard and mouse for input.

	void
	Shutdown
	void
	Shuts down all DirectInput components and cleans releases any memory allocated.

	bool
	ReadDevices
	void
	Gets the current state of the keyboard and mouse

	bool
	GetKey
	unsigned char _ucKey
	Gets the current state of a key.

	bool
	KeyReleased
	unsigned char _ucDIKey
	Check to see if a key was just released

	char
	CheckKeys
	void
	Check to see what exact button the user pressed

	char
	CheckBufferedKeys
	void
	Check to see what exact button the user pressed

Features

The input system makes sure that the mouse and keyboard are ready to be used when the game runs and that it recognizes the functionality of the game so that the player is actually able to play. It also handles certain situations such as if something is unplugged so as to prevent the game from crashing or breaking if such an event were to occur.

Associated Risks

	Risk:
	Affected Resource:
	P
	C
	RF

	The grid layout is not recongnized by our picking algorithm and so the correct ships cannot be chosen with our grid layouts.
	Dakota, Input
	.3
	.9
	.93

	
	Response or avoidance:

	
	Mitigation

 When the grid and input is functioning, test to make sure that the grid layout works with picking.

If not completed by Alpha:

 Ask for help from Sean Murray

No later than 3 days after Alpha

Time to Complete Estimate

Total: 5 Days

Keyboard – 1 day

Mouse
-- 1 day

Controller – 2 days

Integrating and testing the input system – 1 day

Module Author(s)

Dakota Humphries

Camera System

The Camera system will only be responsible for receiving the input to move and sending its matrix over to the rendering system. The matrix will then be used for culling objects. When a unit is selected, the camera will zoom in on it, and the mouse look algorithm will be implemented using that unit as the center point. When the arrow keys are being used, then it will move the selected tile and the camera will move with the cursor. But otherwise the mouse will have free roam abilities. There is a key assigned to switching the active grids and this will move the camera different ways depending on the position of the camera when the active plane is shifted.

Dependencies

Accesses the following:

· Render Engine

· Grid

Accessed by the following:

· Event System

	Return
	Name
	Parameters
	Description

	void
	GetCameraMatrix

	// the matrix to copy the camera’s matrix into

Mat4& _cameraMa
	Copies the camera’s current matrix into the matrix passed in as a parameter.

	void
	SetCameraTarget
	// the new target object to focus the camera on

CBaseObject* _target
	Sets what the camera will focus on, (a selected ship/planet/star, or the center of the active grid)

	bool
	Update
	// amount of time passed since last update

float _fElapsed
	Updates the camera’s position and view based on input from the Input System and the amount of elapsed time since the last frame

	void
	Input
	void
	Checks for input from the user for rotation, panning, and zooming.

	void
	FollowUnit
	void
	Uses the target from the SetCameraTarget function and zooms in till 3 grid spaces away from the target to follow it as it moves. This will give the player a sense of the unit being alive.

Features

· Enables the free use of the camera so the player can view the entire grid from all angles.

· Allows for culling of objects outside the frustum

· Reduces GPU calls

· Zooms in on a unit (3 grid spaces away) when it is selected

· Arrow keys translates the camera and moves the selected tile

Associated Risks

	Risk:
	Affected Resource:
	P
	C
	RF

	Camera system: when a player selects a target, it immediately shows that target without a smooth transition. This may prove too abrupt and disorienting to the player to the point where they will not want to play the game.
	Daryl McGhee, Camera System
	.4
	.9
	.94

	
	Response or avoidance:

	
	Mitigation:

Continuous testing of the camera system and play testing of the integration of the camera system into the game.

Backup Plan:

If the camera system is disorienting and not fun still after Feature Frag 2, then smooth transitions will be added to the camera system.

Time to Complete Estimate

Total: 5 Days

Camera Follow – 2 days

Rotate Around Center Point – 1 day

Attach to Different Planes – 1 day

Integrating and testing the camera system – 1 day?

Module Author(s)

Daryl McGhee

Collision (global)

The collision system will only be accessed functionally and will not be able to call functions outside its own scope. The collision system will be able to be accessed from anyone, however, the collision system will only interact with the grid, combat, AI, and menu system. The collision system will only work for detection of collisions, not the reactions themselves. A reaction to a collision will by handled through an Event system to play effects, and the combat system to do damage against a unit.

	Return
	Name
	Parameters
	Description

	bool
	SphereToSphere
	//The Sphere to check against

CSphere _Target

//The Colliding Object

CSphere _Source

	The most used collision function, this will be used to calculate any collisions for tile based movement ranges and collisions with environmental objects.

	bool
	RayToSphere
	//The Sphere to check against

CSphere _Target

//The Line to collide with

CLine _Ray

// The direction of the collision, Farthest or Nearest

bool _bDirection
	The picking algorithm, will have two forms of Ray to Sphere. The Ray to sphere collision check will have two options, to collide with the farthest object or the nearest object. The nearest object form will be used for objects such as ships and environmental objects, where as the farthest will be used for selecting the high-lighted tile on the grid.

Features

· Allows for all objects to collide correctly in the world along with the picking algorithm.

Associated Risks

	Risk:
	Affected Resource:
	P
	C
	RF

	Picking algorithm for grid based selection is choppy selecting the wrong tile.

	Thomas Impellitteri, Grid
	.4
	.9
	.94

	
	Response or avoidance:

	
	Use previously proven methods for the collision or switch the type of object the collision is with, plane, cylinder, etc.

If not done by POC, switch all picking collisions to a point to plane method.

Time to Complete Estimate

Total: 3 Days

Sphere to Sphere – 1 day

Tile Based – 1 day

Point to Plane – 1 day

Module Author(s)

Thomas Impellitteri

Menu System (global)

The menu system will encompass all options for a menu. This includes: buttons, scroll bars, check boxes, etc. With this in mind, the Menu system itself will contain a Main Menu, Options, Credits, Multi-player, HUD, Pause Menu, and a Quit Menu.
	Return
	Name
	Parameters
	Description

	void
	Enter
	CState* _pNewState
	Enters the specified state

	void
	Update
	float _fElaspedTime
	Updates the current state

	void
	Exit
	void
	Exits the current state

	CEvent*
	OnMenuButtonClick
	void
	Sends the OnMenuButton Event

	CEvent*
	RenderMenu
	void
	Sends the RenderMenu Event

	CEvent*
	RenderShip
	int _nShip
	Sends the RenderShip event, this will render a ship into the HUD, and can only be done by the HUD.

	void
	IncreaseVolume
	int _nAmount
	Increases the volume for the game by nAmount, Option Menu specific.

	void
	DecreaseVolume
	int _nAmount
	Decreases the volume for the game by nAmount, Option Menu specfic.

Features

Transitions the player from one state to another, allowing them access into the game as well as changing different aspects of the game such as the volume.

· Main Menu

· Allows the player to:

· Access the game

· Change options

· Load a game

· View the credits

· HUD

· Shows the player(when a unit is selected)

· RemainingHP/totalHP

· Move range

· Attack range

· Ship Name

· Ship class

· Currency

· Options

· Allows the player to change

· Volume of BG Music

· Sound Effects

· Gamma

· Credits

· Allows the player to view the names of the people and companies that made the game possible.
· Pause

· Allows the player to:

· Save the game exactly where you left it

· Go straight to the Main Menu

· Resume the game

Time to Complete Estimate

Total: 23 Days

· Main Menu

· Render, accept input, enter the game, access sub menus (Options and Credits), and exit the game – 1 day

· Load Menu

· Render, accept input, load saved profiles/games –1 day

· Save Menu

· Render, accept input, save player's current stats and current level progress if applicable – 1 day

· Options Menu

· Render, accept input, and adjust gamma, music level, and sound effects – 1 day

· Overworld Menu

· Render, accept input, and select next level – 1 day

· Shop Menu

· Render, accept input – 1 day

· Buy/Sell ships – 1 day

· Upgrade Weapon levels – 2 days

· Customize Ship's Weapons – 2 days

· Buy/Add upgrades – 1 day

· Sell/Remove upgrades – 1 day

· Briefing Screen – 1 day

· Render, accept input, and option to enter the battle field or enter the shop – 1 day

· Pause Menu

· Render, accept input, pause game, enter options menu, option to save game progress, and exit game to main menu – 1 day

· In-game Menu

· Render, accept input, attack enemy, defend ship, move ship – 1 day

· Credits Menu

· Render, accept input, and exit to main menu – 1 day

· HUD

· Render the HUD, minimap, and display the player's current currency – 1 day

· Ship status

· Display the selected ship's armor and equipped weapons – 1 day

· Integration and Testing updating of information in the HUD – 1 day

Module Author(s)

Daryl McGhee

Object Manager (singleton)

The Object Manager will contain several smaller lists for rendering and collision purposes. The smaller lists will consist of, Environmental Objects, Player Ships, and Enemy Ships. The player ships can be a 2D array due to multi-player. All objects within the object manager will be contained in a base class that will be derived from.

Dependencies

Accesses the following:

· Grid

· Event

· Render Engine

· Combat System

Accessed by the following:

· Combat System

· Grid

· AI

	Return
	Name
	Parameters
	Description

	void
	CreateObject
	//The Objects type, Ship, Enemy ship, Environmental Object

int _nObject

// The Type of Object, such as: Ship, Scout, Fighter, Gunship, etc.

 int _nType
	Creates a single object based on the _nObject list to be stored within a list of the same time. The object will be filled from a Lua scripting file based on the _nType of object.

	void
	RemoveObject
	//The Objects type, Ship, Enemy ship, Environmental Object

int _nObject

// The Type of Object, such as: Ship, Scout, Fighter, Gunship, etc.

 int _nType

//The index of the ship in the list

int _nIndex
	Removes a single object from a single list based on the _nObject, _nType, and _nIndex.

	void
	ClearList
	//The object list to delete or clear

int _nObjectList
	Clears the specified list with _nObjectList.

	void
	GenerateObjects
	void
	Creates the Objects for the levels: enemies and environmental objects from a Lua scripted file.

Features

· Enables rendering and interactions of all objects through a single interface.

· Object Manager Instance

· The Object Manager will have a single instant that will be updated through events and through the combat system.

Time to Complete Estimate

Total: 1 Days

· Implementation – 1 Day

Module Author(s)

Thomas Impellitteri

Event (Singleton)

The main way of communication in between systems will be the Event Manager. The Event manager will only be able to send events out to other systems by previously receiving a message from another system. So the event system will be both accessed by the same systems it can have access to.

Dependencies

Will access the following:

· Combat System

· AI

· Camera System

· Effects

Will be accessed by the following:

· Combat System

· AI

· Object Manager
	Return
	Name
	Parameters
	Description

	bool
	CreateEvent
	void
	This function is never called outside the class, therefore is of private scope. The Create event function will be called when the RecieveEvent gets an Event that has never been used before and adds it to the list of possible events.

	void
	RecieveEvent
	//The Event to filter through the Event system and send to other Systems

char* _pcEvent
	The method of sending information to the Event system. All Events will have to be sent into this function which will either call a create message or not, but will always call a send event after going through the ParseEvent method.

	void
	SendEvent
	void
	Sends the completed Event to the system after the event goes through the ParseEvent algorithm.

	bool
	DeleteEvent
	//The Event to remove from the system

char* _pcEvent
	Removes the specified event from the list. This will only be called at the end of the program during clean up, or when an Event has not been used for some amount of time (about 5 minutes).

	CEvent* pEvent
	ParseEvent
	//The Event to parse

char* _pcEvent
	ParseEvent is meant to take the received char* message, and turn it into an event. This Event will be used to store information for the Effects or AI systems.

Features

· Communication between classes

· Scripted AI Events

· Effects Events to a cascade send.

· Ability to send any event to any system.

Associated Risks

	Risk:
	Affected Resource:
	P
	C
	RF

	The Event system becomes bogged down with events that do little to nothing and or are never used. These events will end up clogging up the system and thus making the game run slower while the Event system tries to figure out where the Event is suppose to go.
	Thomas Impellitteri, Event System
	0.5
	0.4
	0.7

	
	Response or avoidance:

	
	Have Thomas plan events before implementation by FF1.

If the system is still bogged down by FF2, remove the ability to create events on the fly and switch to either hard coded events or scripted events.

Time to Complete Estimate

Total: 4 Days

· Implementation

· Functionality – 1 Day

· Communication between Classes – 2 Days

· Bug Testing – 1 Day

Module Author(s)

Thomas Impellitteri

File Exporter (global)

The file exporter will be responsible for saving and loading games as well as importing all maya data files. The file exporter will save and load games in binary .dat files for the option of trying to hide information from the user. All resource objects, whether it be Maya or sound files will be stored within pak files to keep all assets within a single location.

	Return
	Name
	Parameters
	Description

	bool
	WriteGame
	//The File to save to

const char* _pcFileName

	Saves the game information of: resources, ships, ship upgrades, and progress, to the _pcFileName file in a binary format. Returns true if file saves completely and correctly.

	bool
	ReadGame
	//The File to Load from

const char* _pcFileName
	Loads the game information of: resources, ships, ship upgrades, and progress, to the _pcFileName file in a binary format. Returns true if file loads completely and correctly.

	bool
	ReadAsset
	//The Pakfile to load from

const char* _pcPakFile

//The header for the specific item to load

const char* _pcPakItem

	Reads in the set asset using the _pcPakItem tag to find which item to read in inside of the _pcPakFile. Creates and stores the specific object inside either the Object, Effect, or Menu manager.

	bool
	WriteAsset
	//The Pakfile to load from

const char* _pcPakFile

//The header for the specific item to load

const char* _pcPakItem

//The header for the specific item to load

const char* _pcFileName

	Writes the _pcPakItem tag along with the item itself, _pcFileName, to the _pcPakFile. This will be used in later reference to reduce the overall memory footprint of the game to make objects on the fly.

Features

· Enables the player to save and load games for later use.

· Keeps all assets in a single location with Pak files

· Reduces Memory footprint

Time to Complete Estimate

Total: 5 Days

· Maya Exporter – 1 day

· Game saving – 2 days

· Game loading – 2 days

Module Author(s)

Mike Wood

Lua Parser (global)

A type of reading in data for files. The Lua parser will handle reading events for the AI system and keeping all the information of ships and environmental object sizes and positions.

	Return
	Name
	Parameters
	Description

	void
	OpenFile
	const char* _pcFileName
	Opens the file for a Lua format.

	void
	Close
	void
	Closes the file and deletes any dynamic memory.

	(varitey)
	ReadData
	//The Tag to find in Lua, if Null returns with the next object on the stack from Lua

const char* _pcTag,

//How far to read into a Table in Lua, defaulted to 0 otherwise

 unsigned int _nTableIndex
	The ReadData function will be overloaded in several ways in order to read all data nessessary from Lua. This will be overloaded for bools, numbers, strings, and tables.

Features

· Quick and easy changes to all numeric data members

· Ease of use for balanacing

· Scripted Events for AI and the Effects System
Associated Risks

	Risk:
	Affected Resource:
	P
	C
	RF

	 The Lua scripting is a relatively new language set can end up causing problems for the AI scripted events if scripted improperly. The decision tree, that runs the AI's pathfinding is, bases its decision on the scripted events. Therefore, improper scripting will cause the decision tree to fail and thus the pathfinding to fail and there will be no AI for the player to fight against.

	Thomas, AI system
	.4
	.8
	.88

	
	Response or avoidance:

	
	Research the Lua manual (5.1) that was obtained from Lebo.

Seek assistance from Sean Murray.

Seek assistance from Lebo, if Lebo is unavailable then ask our EP if he might know someone that can help.

Scrap scripted event if not done by Feature Frag #1, and have the decision tree based run on hardcoded events.

Time to Complete Estimate

Total: 4 Days

· Research and Development – 2 Days

· Lua Scripting – 2 Days

Module Author(s)

Thomas Impellitteri

AI

The AI system will be responsible for moving all ships not under the players own control. Each ship under the AI will have their own path finding using the same algorithms due to the range of movement. Each ship under the AI's control will have an added heuristic value to each of the events the AI can receive. So a scout receiving the same event as a Starcruiser will act differently. All events will enter a decision tree with heuristic weight costs for each decision. These will then run the path finding method of the chosen event. To be more specfic, the events that the AI system can receive are: Fight, Flee, Charge, Take Cover, and Capture. These, based on information the AI system receives from the Grid, will give an added heuristic cost to certain tiles based on whats around them. For example, if a unit receives the Capture event, it will be more driven to tiles near celestial bodies that can be captured. Where as if it where to receive the Charge event, the AI would head straight for the nearest unit with no regard for its own personal safety.

Dependencies

Accesses the following:

· Event

· Combat System

· Object Manager

· Grid

Accessed by the following:

· Event

· Combat System

· Grid

	Return
	Name
	Parameters
	Description

	CTile* pPath
	FindPath
	CTile _pGoal, CBoard _Board
	Finds the paths the path based on the target goal tile to the units location from the boards range of movement, A* pathfinding.

	unsigned int
	DecisionTree
	CEvent* _pEvent
	The main AI algorithm, the decision tree will be based on events it recieves from either Lua or the Event System. These events will drive the pathfinding method and how the unit will act during combat: flee, attack, charge, defend, etc.

	CTile pGoal
	FindGoal
	CTile* _pMovementRange
	For pathfinding, the FindGoal function will use the decision it receives from the tree to determine which tile within its movement range is the best option to complete that decision.

Features

· Creates a compelling AI which provides a challenge to the player

· Game can play itself for quick balance testing and bug testing.

Associated Risks

	Risk:
	Affected Resource:
	P
	C
	RF

	The AI becomes either too overpower or too easy and doesn't provide a challenge to the player, throwing them into an utter distaste for the game. Destroys the fun factor.

	Thomas Impellitteri, AI
	0.7
	0.8
	0.94

	
	Response or avoidance:

	
	Have friends and family test project after AI completetion.

Test the AI against itself for balancing.

If the AI is still not fun by Alpha, switch gears into making the main point of the game Multiplayer.

Time to Complete Estimate

Total: 9 Days

Attack – 1 day

Flee – 1 day

Take Cover – 1 day

Charge – 1 day

Defend
 -- 1 day

Path-Finding – 4 days

Module Author(s)

Thomas Impellitteri

Timer (global)

A basic timer class to help keep track for buffered input and effect durations.

	Return
	Name
	Parameters
	Description

	void
	Reset
	void
	Resets the Timer

	float
	GetTime
	void
	Returns the time elapsed in seconds

	int
	GetFPS
	void
	Returns the Frames per Second

Features

Keeps track of the time elapsed and is used to keep the game running correctly. Also shows the frames per second as a way to check progress, and game speed.

Time to Complete Estimate

Total: 1 Day

Implementation - 1 day

Module Author(s)

Daryl McGhee

Sound Manager (singleton)

The Sound Manager will contain three buffers at all times. These buffers will always be cleared when playing nothing, but will be ready to receive files. The buffers themselves will have reserved functionality that it will receive from three separate systems. The sound manager will receive background music from the Menu System, sound effects from the Effect system, and environmental noise from the Camera system.

Dependencies

Accessed by the following:

· Game Module

· Effect System

	Return
	Name
	Parameters
	Description

	void
	PlaySound
	//Refers which buffer to play the sound in

int _nSoundType
	Plays the sound of the type called.

	void
	StopSound
	//Stops the sound playing in the Buffer Layer

int _nLayer
	Stops the currently playing sound on the layer specified.

	void
	Init
	void
	Initializes the sound manager

	void
	Shutdown
	void
	Shuts down the sound manager

Features

The sound manager handles all sound played in the game. It will be layered allowing multiple sounds to be played at once. Its also tied to the event system so that when other systems need sound such as the effects system, its functionality is able to be used by the system.

Associated Risks

	Risk:
	Affected Resource:
	P
	C
	RF

	The sound system can receive too many messages at once causing it to slow down the system by having to parse all the messages and play the correct sound. Such as if the sound system receives fifteen events for sounds, but can only play three at a time. The sounds then may bog down the system for what it wants to play or may seem off key or delayed.
	Dakota, Sound Manager
	.5
	.9
	.95

	
	Response or avoidance:

	
	Mitigation

 Test the event system to see just how much the game can take at one time.

If not fixed by Alpha

 Change functionality of the sound manager so that it is either contained in another module or decrease the amount of sounds in the game that are played at one time. Implemented no later than a week after Alpha.

Time to Complete Estimate

Total: 9 Days

· Implement FMOD wrapper – 2 days

· Research 3D sound – 2 days

· Implement 3D sound – 4 days

· Adjusting and Testing – 1 day

Module Author(s)

Dakota Humphries

Particle Engine (singleton)

The particle system can only be accessed by the Effects System. The particle manager will be responsible for all added particles to the effects currently being played. Instead of sending particle effects to the render engine, particles will be activated by the Effects system giving the particle manager a position and duration to play the particle at.

Dependencies

Will access the following:

· Render Engine

Will be accessed by the following:

· Effects System

	Return
	Name
	Parameters
	Description

	void
	RecieveEvent
	CEvent* _pEvent
	This is a sub event received from the Effects system. This will give the particle system which particle effect to play, where to play it, and for how long.

	void
	Render
	void
	Renders all the particles on three, accessing into the render system.

	bool
	Update
	float _fElapsedTime
	Updates the particles by _fElapsedTime from the previous frame, handled by the effects manager.

Features

· Allows for low level management of effects.

Time to Complete Estimate

Total: 3 Days

· Implementation and Creation – 3 days

Module Author(s)

Keith Roiser

Effects (wrapper)

The wrapper and packager for all effects. The Effects system will handle any and all visual and audio feedback for the player. Effects themselves will only be triggered by the Event system then passed off to the rendering system once all sub-systems have been triggered.

Dependencies

Will access the following:

· Render Engine

· Sound System

· Particle Engine

Will be accessed by the following:

· Event System

	Return
	Name
	Parameters
	Description

	void
	SendEvent
	void
	Sends the event out to the other sub systems in order to receive back the information about which sound and particles to display.

	void
	RecieveEvent
	CEvent* _pEvent
	Recieves the effect to play from the event system. Contains all data on which sounds, particles, effects, and duration of all these objects.

	void
	BuildEffect
	void
	After receiving all the return events from the sub-systems the Effect system is now ready to package all the sub-systems together to play at once.

	void
	PlayEffect
	void
	Happens after the Effect is completely built, the Effect plays all the parts that it has received from the lower systems.

Features

· Pakages all parts of an effect together in a single container, so only one layer ever needs to be updated.

· Creates effects on the fly to reduce memory footprint.

Associated Risks

	Risk:
	Affected Resource:
	P
	C
	RF

	The Effects system becomes overly complex, causing the sub-systems to not function properly. The events running the system can cause a wrong timing between sending and receiving events between the effect system and its several sub-systems.
	Keith Roiser, Effects System
	0.6
	0.8
	0.92

	
	Response or avoidance:

	
	Have the Events transfer directly to the sub-systems instead of the Effects Manager. (FF1)

If the timing problem still exist by FF2, switch to having all effects in memory beforehand.

Time to Complete Estimate

Total: 28 Days

· Effects Implementation

· Light Laser Cannon – 1 day

· Medium Laser Cannon – 1 day

· Heavy Laser Cannon – 1 day

· Mine – 1 day

· Proton Torpedo – 1 day

· Bombs – 1 day

· Stasis Field – 1 day

· Ion Beam – 1 day

· Black Out – 1 day

· Tractor Beam – 1 day

· Self-Destruct – 2 days

· Weapon Firing – 3 days

· Star Detonation – 4 days

· Planet Destruction – 3 days

· Blackhole – 1 day

· Wormhole – 2 days

· Asteroids – 3 days

Module Author(s)

Keith Roiser

Game Feature Breakdown

Combat System

This module is responsible for controlling the flow of combat in the game. It handles the main game duties, such as moving, attacking, and defending. It deals with calculation of damage, and also determining the ranges of attack or movement. It uses the grid to give the player a visual representation of where the player can move and shoot. Then due to collision, damage is calculated and when that happens it will update the player.

Dependencies:

Will access the following:

· Event

· Grid

· AI

· Object Manager

· Game Module

Will be accessed by the following:

· Event

· Game Module

· Object Manager

· AI

Algorithms:

· Damage Resolution

· (Total Incoming Attack Damage – Defending Armor mitigation) – Shield Armor mitigation = Total Damage Dealt

Where:

Total Incoming Attack Damage = the attacker’s attack power that they sent to the target.

Defending Armor mitigation = the defender’s armor level mitigation.

Shield Armor mitigation = added mitigation if the defending unit is using a normal defense.

· Accuracy Determination

· To determine whether or not an attack hits an enemy, each ship is given an Evasion stat that varies with each ship. This stat is a percentage that determines the chance to dodge an attack. This percentage is larger for smaller ships, and smaller for bigger ships. The special defense Evasive Maneuvers increases Evasion for the ship for that turn.

· Moving

· To determine how far a unit can move on either plane, the moving range is taken into account for each unit. When a unit is selected, highlighted radius of hex points show the available places that the unit can move on that active plane. By the press of a button, the player can move the active plane to show the available places of movement, by a highlighted radius of hex points. For moving up or down to a different plane, it costs 1 movement space. So if a scout with a movement radius of 8 tries to move to a plane above it, then the radius shown would be a radius of 7, and if it tried to move up or down two planes, then the radius shown would be a radius of 6.

· Firing

· This is the same for moving; only instead the firing range of each ship is taken into account.

· A special case is taken into account for the bomb. It has no set range, the catch is that, it can only be dropped; the radius that the bomb will explode at is shown. It still can be moved up and down, but only on planes below the attacking ship.

· Damage from a Star

· Every turn that the ship is in the process of capturing a small star then the ship loses 55 HP each turn; 65 for a medium star, and 75 for a large star.

Specific Uses:

· Battle between a Scout and a Battleship

· Scout’s Turn

· Health Check (Player)

· Scout Moves (Grid, Rendering)

· Uses position on the grid and moving algorithm to determine moving range

· Scout moves to position

· Scout Attempts to fire(Grid)

· Fire Range check

· Uses position on the grid and firing algorithm to determine if the target is in range

· Scout chooses weapon (Player)

· Determines weapons equipped

· Scout fires proton torpedo (Projectile/Object Manager, Event System)

· Accuracy is determined using Accuracy Determination

· The projectile manager creates the projectile

· The combat system sends an event to the effects system to create:

· Sound effect(traveling, impact)

· Impact explosion effect

· The event of collision is sent and damage is calculated using the Combat Resolution algorithm

· The Battleship took 200 damage (Player, HUD)

· The player is updated

· The HUD is updated

· If the Battleship’s HP is 0

· Send the event to the Effects system for the Battleship to explode(Render Engine, Event System)

· The event is sent that the scout wins(Event system)

Functions:

	Return
	Name
	Parameters
	Description

	void
	SendEvent
	void
	Sends an Event to find out who hit who, so it can calculate damage

	void
	Recieve Event
	Event* _pEvent
	Recieves an Event telling the system the combat information

	void
	ResolveCombat
	void
	After recieving the information about damage and who hit whom, then it can begin the calculations

	void
	UpdateFleets
	void
	Updates the player’s and the enemy’s fleet.

Risks:

	Risk:
	Affected Resource:
	P
	C
	RF

	A big risk associated with this module is that since this is a central module to the game, if it does not work, then the core of the game is bad, and this has to be fixed first before anything else is added to the game.

	Daryl McGhee
	.8
	.9
	.98

	
	Response or avoidance:

	1.
	1. Have family/friends/studio members play test the game and give us feedback.

2. Keep constant contact with team so we can communicate any imbalance issues right away and try to come up with ideas to fix it.

3. Cut off aspects of combat system to make it simpler, cut weapons and upgrades if the game isn’t balanced by Alpha.

Completion Time:

Total Time: 3 days

· Combat Resolution – 1 day

· Accuracy Determination – 1 day

· Damage taken from Environment – 1 day

Module Author:

Daryl McGhee

Shop System (global)

The Shop system is responsible for allowing the player to buy and sell ships, and also purchase ship upgrades and repairs for damaged ships. The shop is in charge of dealing with the global point system which limits the amount of ships that the player can have at a time. It also calculates the charges and returns the amount of currency that the player has left and updates the player after they have finished shopping.

Algorithms:

Determining Starting Ship Stats (Equipment, Attack Power etc…)

This is done once when the shop starts

We used a point system to determine how a ship starts off and how it grows from that base stat. Each ship starts off with an attack power point total.

Scout: 50

Fighter: 150

Gunship; 250

Battleship: 350

Starcruiser: 450

Then after that we give the ship starting equipment that equals that attack point total. So for example a light laser cannon does 50 points of damage, so that is the only equipment that the Scout starts off with, and the heavy laser cannon does 150 points of damage, so the Starcruiser can start off with 3 heavy laser cannons, or any combination that equals 450. We used these values for determining attack points for weapons at their basic levels: (Not all weapons deal actual damage, but the values given are attack point equivalents)

It is basically set up around the Starcruiser and the Scout where the equivalence of a 1 Starcrusier is 9 scouts and we worked our way from there.

Light Laser Cannon: 50

Medium Laser Cannon: 100

Heavy Laser Cannon: 150

Ion Beam: 300

Proton Torpedo: 150

Mines: 150

Bombs: 150

Tractor Beam: 150

Stasis Field: 150

Blackout: 300

Reflector: 200

The Ion Beam, Blackout, and Reflectors are special cases, since they have special effects. Usually the special attacks have a value of 150, but these are doubled because of their capabilities. But each of them comes with a drawback of a cool-down/charge-up time of 3 turns.

So we create a combination of equipment that equals the point value for that ship, and then that is what they start off with when you buy ships from scratch. Now each ship has equipment slots that they can use to equip more weapons or defensive and offensive upgrades. So their attack power total can be increased but those previous stats are just what each ship starts off with, so when you buy a ship brand new that’s what you get.

Specific Uses:

Starting off the Game

Since when you first start you have no ships, on the first level, you must visit the shop.

· Point and Currency check

· Player has 0 credits

· Player has 10 points

· Each ship is worth a point total determined by the ship stats algorithm

· Scout = 1 point

· Fighter = 3 points

· Gunship = 5 points

· Battleship = 7 points

· Starcruiser = 9 points

· Player buys ships

· 3 Scouts

· 1 Battleship

· Player’s points is updated

· Ships are added to the player’s fleet

· Player has 0 Points left

Functions:

	Return
	Name
	Parameters
	Description

	void
	BuyShip
	Ship* _pShip
	Adds the ship to the player’s fleet and subtracts the points from the player’s point total.

	void
	SellShip
	Ship* _pShip
	Removes the ship from the player’s fleet and adds the points back to the player’s point total.

	void
	Render
	void
	Renders the shop menu

	void
	Update
	Float _fTimer
	Updates the menu

	void
	GetInput
	void
	Recieves input for the menu

Completion Time:

Total Time: 8 days

· Render, accept input –1 day

· Buy/Sell ships – 1 day

· Upgrade Weapon levels – 2 days

· Customize Ship's Weapons --
2 days

· Buy/Add upgrades – 1 day

· Sell/Remove upgrades – 1 day

Module Author:

Daryl McGhee

Upgrade System (global)

The upgrade system will handle all aspects of upgrading the player’s ships: increasing weapon strength, equipping new weapons, and increasing the ship’s defensive capabilities.

To upgrade a ship, the player will have to enter into the upgrade menu. From there, the player will select a ship to purchase an upgrade(s) for. After selecting a ship, a list of possible upgrades will appear, with the text for the unavailable upgrades grayed out, and unable to be chosen. An upgrade will be unavailable for purchase if the ship either has that upgrade already, or the ship doesn’t have enough available expansion slots.

After the player selects an upgrade to purchase, a confirmation box will appear to make sure that the player has chosen the correct upgrade that he or she wished to purchase. If the player is sure about his or her choice, the upgrade will be installed on the ship automatically.

Algorithms:

Equipping Upgrades and Weapons

Every ship has a set number of equipment slots that they use to equip anything, weapons, special offenses and special defenses, and each one of those takes up a certain amount of slots. So slots are used to equip, and when it’s full, ships cannot equip anything else, something would have to be replaced first before they can equip something else. For upgrades the situation is a bit different in that, when you upgrade a weapon, it automatically replaces the lower level weapon and it doesn’t take up any more slots. For example, a Scout has a Level 1 Laser Cannon equipped and all the other slots are filled up. If the player buys an upgrade for their Laser Cannon, then it becomes a Level 2 Laser Cannon, and it still fits in the equipment slots, it doesn’t take up any extra space.

Selling Upgrades and Weapons

When a player wants to sell upgrades, they get 75% of the total currency spent on the weapon. (Rounded to the nearest 10 tenth)

Specific Uses:

Scout buying upgrades and weapons

As an example of how the upgrade system is used, let’s say that a player has a Scout that they see is not performing well, and they want to upgrade it but they want it to have more firepower so it can hold its own. The Scout has 4 equipment slots and currently it is equipped with:

Light Laser Cannon Lvl 1 : Light Laser Cannon Lvl 3 : :

They go into the upgrade menu and it looks like this: (Name, #of slots, -- price)

Light Laser Cannon, 1 – 250 credits

Light Laser Cannon Upgrade – 100 credits

Medium Laser Cannon, 2 – 375 credits

Medium Laser Cannon Upgrade – 275 credits (Must have Light Laser Cannon Lvl 3)

Mines, 1 – 350 credits

Mine Upgrade – 200 credits

Evasive Maneuvers, 1 – 350 credits

Evasive Maneuver Upgrade – 250 credits

Proton Torpedoes, 2 – 550 credits

Proton Torpedo Upgrade – 400 credits

Stasis Field, 2 – 550 credits

Stasis Field Upgrade – 400 credits

Armor Upgrade – 700 credits

So the player has 2600 credits to spend, and first they buy the Proton Torpedoes and add that to their equipment slots. It takes up two slots, so that’s all they can add. They have 2050 credits left. So now they want to upgrade what they have now.

So they want to buy the Medium Laser Cannon Lvl, but since they would be increasing a class, then it would take up an extra slot, so they can’t do that. So instead they get 2 Light Laser Cannon Upgrades, and the Proton Torpedo Upgrade. Now the equipment that they have looks like this:

Light Laser Cannon Lvl 3 : Light Laser Cannon Lvl 3 : Proton Torpedoes Lvl 2 (2 slots):

Let’s say that they decide they want to sell the Proton Torpedo so that they can add more lasers. The total they spent on the Proton Torpedoes is 950 credits, so they get 710 credits back. Then they get 2 Medium Laser Cannon Lvl 1, and they buy 2 Medium Laser Cannon Upgrades because when a Scout increases Laser Cannon classes then they can only go up to level 2.

So now they have 860 credits and their equipment looks like this:

Medium Laser Cannon Lvl 2(2 slots): Medium Laser Cannon Lvl 2 (2 slots)

This is where the limitations come in. While the player may have a lot of money left, they only have a limited amount of space. This prevents them from loading up on weapons and becoming too overpowered, but it also gives them something to work towards because they have to take into account the other ships as well, and while one ship may have a certain weakness, another ship can make up for that.

Functions:

	Return
	Name
	Parameters
	Description

	void
	UpgradeShip
	Ship* _pShip,

Weapon* _pWeapon

	This function will increase the specified weapon’s level on the ship.

	void
	RemoveUpgrade
	Ship* _pShip

Upgrade* _pUpgrade
	This function will remove the upgrade from the ship’s expansion slots.

	void
	AddWeapon
	Ship* _pShip

Upgrade* _pUpgrade
	This function will add the upgrade to the ship’s expansion slots.

	void
	Render
	void
	Renders the menu

	void
	Update
	Float _fTime
	Updates the menu

	void
	GetInput
	void
	Recieves input for the menu (mouse and keyboard)

Risks:

	Risk:
	Affected Resource:
	P
	C
	RF

	The upgrade system proves too complex to finish in the time allotted for the project, causing slippage and/or an incomplete upgrade system.

	Mike, Gameplay
	.6
	.8
	.92

	
	Response or avoidance:

	
	1. Have family or friends play test and record their feedback.

2. Reduce the variety of possible upgrades available to the player.

3. If not complete by Alpha, cut the upgrade system and give each ship a specific set of weapons.

Completion Time:

Total Time: 4 days

· Upgrade Weapon levels – 2 days

· Customize Ship's Weapons --
2 days

· Buy/Add upgrades – 1 day

· Sell/Remove upgrades – 1 day

Module Author:

Daryl McGhee

Grid

Dependencies:

Access to the following:

· Object Manager

Will be accessed by:

· Combat System

· AI

· Camera System

· Object Manager

Algorithms:

Determination of Moving and Firing Range

By passing in a tile to the grid, the grid will perform an adjacency check to a target layer, then it will return the new tile array with all the possible movement and attack ranges. These adjacency checks will be a 1 to 1 check due to the arrangement of the grid in a 2D array.

Developing the Grid

The development of the grid will be a for loop that winds up and down. Each side of the Hexagon will need 100 tiles, increasing by 2.5 in height each column and 5 in each row. Once one side reaches to 100 tiles, the loop will reverse decreasing each column by 2.5 and each row by 5.

Specific Uses:

Picking Algorithm

The picking algorithm will work in a front to back method, such as, the first object the picking collides with is the target of the player and stops checking once a collision has occurred. This will be done by checking the target X and Y with the ray's X and Y using a closest point on a plane for a worst case check of 299 checks.

Ex.

for(number of columns)

if(MaxX > targetX && MinX < targetX)

for(number in column)

if(MaxY > targetY && MinY < targetY)

return tile;

Functions:

	Return
	Name
	Parameters
	Description

	void
	GenerateGrid
	void
	Creates the grid

	void
	HighlightAdjacents
	CTile* _Tile, std::vector<CTile*>& _vTiles
	Highlights the movement and firing ranges. Is called by the GenerateField function.

	void
	GenerateField
	CTile* _Tile, std::vector<CTile*>& _vTiles, const unsigned int _unRange
	Generates the movement ranges and firing ranges of the ship.

	CTile*
	GetTile
	const unsigned int _nRow, const unsigned int _nColumn
	Gets the tile in that row and column

Risks:

	Risk:
	Affected Resource:
	P
	C
	RF

	The adjacency table use for tiles in the grid to determine who's next to them is inaccurate and causes the wrong tiles to be selected.

	Thomas Impellitteri, Grid
	0.8
	.8
	0.96

	
	Response or avoidance:

	
	1. Seek help from Jeremiah, the AI teacher on the adjacency table.

2. By POC, change the algorithm to a Sphere to Sphere method collision check.

Completion Time:

Total Time: 9 days

· Data Structure that holds grid information – 2 days

· Render all 3 grids – 2 days

· Picking (Selecting ships and movement tiles) – 2 days

· Adjacency (Highlighting selectable tiles) – 3 days

Module Author:

Thomas Impellitteri

Overworld Menu(Global)

Specific Uses:

When the player is transitioning from one level to another, this will give them a visual representation of where they are going, and allow them to go back to levels that they have already visited. It will also have a menu that will allow the player to go to the shop and buy/sell/upgrade ships.

Functions:

	Return
	Name
	Parameters
	Description

	void
	Update
	Float _fTime
	Updates the menu

	void
	Render
	void
	Renders the menu

	void
	GetInput
	void
	Recieves input for the menu

Risks:

	Risk:
	Affected Resource:
	P
	C
	RF

	Because of time, and resources, the overworld menu will not be implemented into the game.
	Daryl, Interface
	.4
	.3
	0.58

	
	Response or avoidance:

	
	Mitigation

· Stay up-to-date with the Gantt chart

· If possible start implementation early

If not done by Beta

· Cut it out

Completion Time:

Total Time: 1 day

· Render, accept input, select next level – 1 day

Module Author:

Daryl McGhee

Milestone Deliverables

Proof of Concept

· Load Models

· Render 2 ships (Fighter/Plasma Jet)

· All 3 grids

· Select ships and be able to control them

· Highlight valid tiles to move to

· Music and sound effects

· One background music song

· One shooting and one impact sound effects

· Turn based game

· Render 1 environmental object

· Win/Lose conditions

· Collision

· Basic combat

· Move the ship and fire its weapon with the spacebar

· Medium laser

Feature Frag 1

· Combat System

· Camera System

· Sound System

· Shop System (buying ships)

· Menu needs to be complete

· Pathfinding

· Tutorial Level (Level 1)

· Gunship/Screamer

· proton torpedo, bombs, and mines implemented

· Implementation of planets, asteroids, and stars

Feature Frag 2

· Upgrade system

· Menu complete

· Decision tree

· Lua Scripted events

· Effect System

· Wormholes implemented

· Primary and Secondary mission objectives

· Asteroid Belt (Level 2)

· Scout/Drone

Alpha

· Main, Options, Credits, and Pause menus complete

· HUD

· Preliminary intro story

· Multiplayer (hot seat)

Beta

· Game Saving and loading

· Save and load menus complete

· Unlockables (concept art)

· Destructible environmental objects

· Planets into asteroids

· Stars into blackholes

· Asteroids destroyed

· Star/Planet explosion visual effects

· Ion Beam, Blackout, Reflector, Tractor Beam, Stasis Beam, and evasive maneuvers implemented

· Blackholes implemented

· Black Hole (Level 3)

· Nebulous (Level 4)

· Battleship/Supernova, Cruiser/Scryer

· Overworld Menu

· Mother Ship (Level 5)

· Bug fixes

· Optimizations

Gold

· All final assets

· Bug fixes

· Optimizations

Appendix A

Memory Map

Available Ram: 128 MB

Ram Used: 110.6512 - 119.6512

	Executable

2 MB
	Code & libraries needed

	Dynamic Memory

2 MB
	Pointers, storage of events/messages, etc.

	Grid

45 KB
	What is on each tile, adjacencies, tile locations, etc.

	Level information

24 KB
	Location/status of environmental objects, primary/secondary objectives, etc.

	Fleet info

3 KB per player
	Upgrades, Units, Currency, etc.

30pt max = 30 scouts

Ship Type

Model ID

Texture ID

Armor Points

Slots*

Position(x, y, z)

Movement Range

Fire Range

State

~80 B per scout

TOTAL: 2400 B

	Sounds

15 MB
	At most 3 playing at a single time, background music, sound effects, environmental noise

	Models

345,792 KB
	Models

13 models

 Ships: Scout 200 polygons

 Fighter 200 polygons

 Gunship 250 polygons

 Battleship 250 polygons

 Starcruiser 500 polygons

 Mother Ship 500 polygons

 Planet, Star, Wormhole 75 polygons

 Blackhole

 2

 Asteroid

 75

3 vertices’ per polygon

1 vertices’ = Position(x, y, z)

 Normal (Nx, Ny, Nz)

 UV's (u, v)

 8*4 B = 32 B

TOTAL: 345,792 B

	Textures

Non-Power2 Total: 57 MB

Power2 Total: 66 MB
	Textures

bit depth = 24

size x count

 16x16 x 12 = 3072

 32x32 x 3 = 3072

 32x256 x 1 = 1792

 64x64 x 13 = 53248

 128x128 x 2 = 32768

 128x512 x 1 = 65536

 128x1024 x 2 = 262144

 256x256 x 6 = 393216

 512x512 x 5 = 1310720

 1024x512 x 2 = 1048576

 // If must be power of 2, I combined the two below

 //1024x768 x 12 = 9437184

 //1024x1024 x 6 = 6291456

 1024x1024 x 18 = 18874368

NON-POWER2 TOTAL: 56708352 B

POWER2 TOTAL: 66145536 B

Integration Plan

Our Technology lead, Thomas Impellitteri, will be responsible for the integration of new modules into the main game build. The main game build will be stored on Alienbrain, as well as in a backup computer. Each individual of the team will have their own application for testing their newer modules to make sure it meets the requirements for integration. These applications will be created daily while individuals work on their own projects to make sure it meets the integration standards.

Integration of new modules will occur every day at the end of coding for all modules that have met the requirements of integration. These requirements include: no errors, only one non-critical system warning, and all functionality of the module is working and causes no 'A' or 'B' bugs cause on the unit-modules. Once all the requirements are met, a team member is allowed to submit the pending changes onto the Alienbrain version for later integration.

All files on the Alienbrain server can be checked out, however, only one .h and one .cpp may be checked out at any time by any one person. This is to say that each person of the team can only have one file of each type. All check-outs must be checked in by 7:00 PM each day, an hour before the end of a working day, so that integration can be proceeded with. Group members can continue working on their modules after 7:00 PM, but no further file changes will be accepted afterwards.

Should the integration of a newer module break, or cause a previous module to break. Both the writer of the newer module and the breaking module, should there be one, will work together to resolve the issue and fix the crash. The module will be stored in a separate section for the two to work on. Afterward the module is removed from the system to get the system working again for the rest of the group to continue testing. Within two days of the bug being found, if the system cannot be restored to a working state, a roll back will be required along with a documentation explaining the reason for the crash. However, should the bug be reduced to a point of only have 'B' bugs, the module will be accepted after the two day limitation. If 'A' bugs still persist, then a rollback will be required.

Testing Plans

Preface, Software Used, and Bug Assignment:

Our QA Lead is Michael Wood. He will be in charge of maintaining the bug database and divvying out bugs to the team members. Bug dispersion among the team will be initially based on who coded the module. For example, if a rendering bug is to be disseminated for fixing, it will be assigned to Keith. If there is a bug with sound, it will be assigned to Dakota, and so on.

Bug documentation and fixing, while an ongoing process throughout the project will be focused on following Beta. Any crashes and major functionality bugs discovered during “normal” play prior to this time period will be fixed accordingly. More devious bugs that only occur under certain (perhaps ridiculous) circumstances will be addressed during the bug testing phase of the project. Bug testing will also be a focused endeavor with certain days dedicated to specific areas of the game.

Bug testing is an indispensable part of the software development life cycle. Virtually no program created is without its issues. Bugs impact not only the team’s productivity when modules don’t work with one another (or at all), but more importantly they impact the end user’s experience. If the bugs are bad enough, the user can discontinue use of the product. Unforgivable and aggravating bugs can cause the loss of a customer for good. For all of these reasons, bug testing should be, and will be, an important part of Supernova Blindside’s development process.

We will be using Bugzilla as the method for logging bugs. Bugzilla is an open source program created by Mozilla. It is used by numerous companies as a way to track software bugs, chief among them is NASA. Due to its open source nature and the pedigree of clients who use it, we feel that Bugzilla will suit our project well.

Methods of Testing:

A primary source of bug reports will come from the programmers themselves. During the course of programming a module, the coder is bound to notice not only issues with their code, but the way in which modules interact with one another. These bugs should be documented immediately so there is a paper trail addressing them.

While a programmer is likely to see major bugs, due to proximity with the code they’re not likely to find all of the issues. Besides, bug testing can be, and is, a full time job so the help of outsiders is all but required. For this reason, we shall have those outside the development team not only bug test, but play test our game too.

Our two resources will be other members of the studio and friends and family. These resources will also be used for playtesting. During the apportioned time, the game will be sent off to friends and family who are willing to help out. Forms for them to fill out (bug report or gameplay report) will be sent, too. In order to determine who will be helping with this portion of the project, sign ups through a forum will be conducted. When possible, a screenshot of the bug and/or a FRAPS of it occurring should be attached to the bug report.

Severities:

Enumerated below are the five (5) severities a bug of Supernova Blindside can be. Following the list is a brief description of what falls under the domain of each severity.

A – Crashes/Memory Leaks

B – Major Functionality

C – Graphical/Immersion

D – Minor

Legal – Legal bugs

A – An “A” severity bug is one that causes the program to crash. These include memory leaks and anything else that causes the program to terminate with or without a stack dump. Stack dumps should be attached to the bug if possible.

B – A “B” severity bug is one in which major functionality of the game doesn’t work because of it. These bugs have an extreme impact on the game because they cut off entire sections of the player’s experience. An example of a “B” bug would be selecting “New Game” from the Main Menu and nothing happens (note: no crash occurred).

C – “C” severity bugs are those in which something is obviously out of place but it does not crash or impact major functionality of the game. Noticeable graphics bugs fall into this category. Other bugs that can be considered “C”s are those that break the player’s immersion without them having to try and look for it.

D – “D” severity bugs are minor bugs that might not ever affect the player, but are still bugs nevertheless. Issues that can be considered “D” severity are text bugs (misspelled words, incorrect grammar, etc.) or a minor case of z-fighting in an area of the game the player isn’t likely to see.

Legal – Legal bugs should be considered to be as severe as an “A” bug. These are bugs that could get us into legal or academic trouble. Undocumented, copied code, improper citation of copyright, and generally not giving credit to another where credit is due are examples of Legal bugs.

Sample Bug Report:

#1701 - In Game: Nebula Stage: A black hole does not form after a star is shot with the Blackout weapon.

Severity: B – Major Functionality

Major Area: In Game

Specific Area: Nebula Stage

Reproducibility: 100%

Status: Confirmed Bug

Steps:

From the Main Menu, select New Game

Build a fleet and go into game

Before the Nebula Stage (stage 4), buy a Starcruiser and equip it with the Blackout weapon

During the Nebula Stage, target a star and shoot it with the Blackout weapon

Observe the effects

Description:

Shooting a star with the Blackout weapon does not cause it to collapse into a black hole. The player is able to target a star correctly and the shooting animation plays but no black hole forms. The bug is not merely a graphical issue since black hole functionality (all players and objects on the level slowly get pulled toward it) isn’t observable. In fact, the player is able to dock with the star and capture it as normal after shooting it. This bug occurs with every star in the game, regardless of the plane they are on, but does not occur with planets (those celestial bodies are able to be blown up by the Ion Cannon with no issues). Shooting a star with the Blackout weapon is supposed to collapse it into a black hole. Attached is a FRAPS video of the occurrence.

Appendix B

Game Folder Hierarchy

2
1

_1296046562.psd

_1296046618.psd

